Why IEEE C37 Does Not Work Well for Distribution-level Synchrophasors

2017-3-22 NASPI Meeting Alex McEachern, Power Standards Lab <u>Alex@PowerStandards.com</u>

Harold Kirkham, PNNL

All errors attributed to Alex, all good ideas attributed to Harold, due to Alex's scheduling problems making it impossible for Harold to review.

Hidden assumptions in C37 (1)

- Synchrophasors are a compression algorithm
 - Compress synchronized time-domain waveform samples to far less frequent magnitude/angle pairs
 - Compression ratio is >3:1, typically 100:1
 - It's a lossy compression, i.e. it isn't reversible

Hidden assumptions in C37 (1)

- Key point: in lossy compression algorithms, we make assumptions about the underlying data.
 - What information losses are we willing to tolerate? Answer is based on our expectations of

data...

Distribution microsynchrophasors and C37 filters

- Require better resolution on magnitude and phase (2 orders of magnitude) than transmission
- Digital filters are tradeoffs between sharpness, damping, and resolution...
- C37 filters are optimized for typical transmission applications
 - Problems with rapid changes during distribution events
 - Problems with resolving distribution-level differences

Distribution microsynchrophasors and C37 definition of frequency

- There is no single definition of frequency!
 - Harold: only defensible definition is the LSE estimate of the value of the parameter in the equation, for the window-time defined.
 - Alex: The optimal definition depends on your purpose or application.
- The C37 definition is useful for transmission grids (large numbers of generators with rotating mass)
- The C37 definition doesn't work so well for microgrids, inverters, distribution generally
 - Depends on the application...
 - Microgrid control, coordination with distribution protection devices, inverter loop control, etc.

Distribution microsynchrophasors and C37 data communication

- C37 protocol is optimized for quasi-real-time control, with low latency, highly reliable data channels, and relatively low data rates.
- Distribution microsynchrophasors
 - Failure-prone data channels, especially during interesting events
 - Higher data rates: per individual sensor location, and multiple sensor locations (500MB per day per sensor)
 - Research, mostly, rather than control...

Conclusions

- There's not much wrong with IEEE C37 when used for its intended application: transmission-level synchrophasors
- Distribution microsynchrophasors have a different set of requirements.
- Micro PMU's have IEEE C37 built in, but it's not optimal for most microsynchrophasor applications.
- Other filters, and other comm channels, work better for microsynchrophasors.

Why IEEE C37 Does Not Work Well for Distribution-level Synchrophasors

2017-3-22 NASPI Meeting Alex McEachern, Power Standards Lab <u>Alex@PowerStandards.com</u>

Harold Kirkham, PNNL

All errors attributed to Alex, all good ideas attributed to Harold, due to Alex's scheduling problems making it impossible for Harold to review.