

Synchrophasors Using eLoran Timing Source

Erik Johannessen¹, Andrei Grebnev¹, Stephen Bartlett¹, Lingwei Zhan², Jiecheng Zhao³, Yilu Liu^{2, 3} (1. UrsaNav Inc., 2. Oak Ridge National Laboratory, 3. the University of Tennessee, Knoxville)

> Mar. 23, 2017 NASPI Group Meeting

Motivation

- Synchrophasors highly rely on timing source
 - \circ Accuracy
 - o Reliability
- GPS Vulnerability
 - Antenna needs clear view of the sky
 - Radio frequency interference
 - Jamming & Spoofing
 - System failure

e-Loran Timing System

- Structure
 - Modern Control Center
 - Modern Transmitting Sites
 - Differential Reference Stations
 ASF Maps
- Performance

JrsaNav

- Accurate (synchronized to UTC)
- Precise with differential corrections(± 100 ns)
- $_{\circ}$ Robust to failures of GPS

e-Loran Timing System

- Independent of GNSS
- Traceability to UTC < 50 ns
- Ground propagation
- All-in-view signal
- Loran Data Channel (LDC)
- Very high power
- Hard to spoof or jam

UN-152A e-Loran timing receiver

Using eLoran for FDR

- Frequency Disturbance Recorder (FDR)
- A distribution level single-phase synchrophasor
- Sensor for Frequency Network (FNET/GridEye)

Testing System

- Compare eLoran and GPS
- Use a Cesium atomic clock as time reference
 - Evaluate the PPS accuracy of GPS and eLoran
 - Stability: 1×10⁻⁷ ppm
- Use FDR for measurement testing
 - $_{\circ}$ Phase angle accuracy: ± 0.029°
 - Frequency accuracy: ± 0.5 mHz

Testing System

- GPS (M12+)
 - $_{\circ}$ Short term error < ± 30 ns
 - $_{\circ}$ Long term error < ± 75 ns

- eLoran (UN 152A)
 - $_{\circ}$ Short term error < ± 10 ns
 - Long term error $< \pm 75$ ns

ational Laborator

I L KNC

Comparison: Angle Measurement

Angle measurements agree lacksquarewith each other

Difference < 0.046° (0.08%) • TVE)

Comparison: Frequency Measurement

• Frequency measurements agree with each other

• Difference < ±0.5 mHz

^比 13

Summary of Result

- PPS timing error of both GPS and eLoran with differential corrections is well below 100 ns
- Angle difference between GPS-FDR & eLoran FDR
 - \circ < 0.046° (0.08% TVE), within FDR's measurement accuracy
- Frequency difference between GPS-FDR & eLoran FDR
 - \circ < ± 0.5 mHz, within FDR's measurement accuracy
- Timing availability in 3 days
 - GPS-FDR: lost 22 times (totally 63 min)
 - o eLoran-FDR: no timing signal loss
 - \circ eLoran PPS long term stability is good even at ~800 miles

Conclusion

- eLoran provides comparable PPS for synchrophasors
- Frequency and angle accuracy are comparable by using GPS and eLoran
- eLoran provides good signal availability and stability

Questions?

