Synchrophasor Technology at Colombian New Control Center
Experiences on implementation

XM
Colombian Power System Operator
What We Need

- Blackout
- SIRENA Initiative
 - A first approach

Timeline:
- 2007: Start iSAAC Project
 - WAMS prototype
 - How SM helps in operation?
- 2012: SM in NCC
 - Operative platform
 - Developed Apps
 - Infrastructure
 - How SM helps in operation?
- 2016
- 2017
- 2027: Continuous Evolution
 - Architecture
 - Apps
 - WAMS and WACS

- Detect and prevent oscillation events
- Improve Situational Awareness
- Architecture and applications
- SM to complement SCADA System
- Comply the Expectations of XM

500 kV network supervised

R&D prototype with data for Control Center Operators

Todos los derechos reservados para XM. S.A.E.S.P.
We visualize the synchrophasorial technology like the platform that **complements** SCADA supervision and would **support** the system in some scenarios of unavailability.
Current WAMS Implementation at Colombian System Operator

Measurement

Telecommunications

WAMS PRODUCTIVE

Level 1
Measurement

Level 2
Telecommunications

Level 3
Data Architecture

Level 4
Synchrophasor Applications

Applications

Architecture
Architecture

Before
- Siemens Control Center
- No integration
- SP*

Now
- Siemens New Control Center
- SP*
- IEC 104
- ICCP
- NCC

RDS
- RTU
 - ICCP, IEC 101, IEC 104
- SIGUARD
 - IEC 104
- PhasorPoint
 - IEC 104
- Other
 - ICCP, IEC 101, IEC 104

Different sources to same point

* Synchrophasor Platform
** Redundant Data Source
Applications

- Oscillations detection
- Islanding detection
- Frequency supervision
- Voltage supervision
- PMU simulation
- Alarms and events
- Calculating data
- Power flows supervision
- Customize visualization
- Exporting historical data
- Data access

All this applications and functionalities are within our new Platform

Oscillation Colombia-Ecuador of 0.4 Hz mode - Show on Control Room
User Interface Used in Control Room

- Angle supervision
- Layer of power flow
- Frequency supervision
- Oscillation detection
- Ψ^+ Phasor Supervision
Hybrid State Estimator

Now our Operational SCADA use Angles measured provided by PMUS

- Tests for Hybrid State Estimator, Started
- Understand and verify the results
- Identify aspects to improve if needed
- Each New PMU is added to Hybrid State Estimator
Change Management

- Involve Operators to Synchrophasor technology and show its advantages.
- Operators must take an active role to feedback synchrophasorial platform.

Aspects to Improve

- Amplitude and damping chart.
- Frequency as input signal to Power Swing Recognition.
- Access to Synchrophasor data through external queries.
- Chart with the maximum and minimum frequency measured.
- Islanding detection using angle differences and time criteria.
- Geographical and multilevel map.
- Capability to set voltages and power flows that the user consider important to supervise on a multilevel maps.
- Platform where user creates their own on line or historical x-y charts.
Contacts – Team Work

• Brayan Andres Arboleda Tabares
 barboleda_ext@xm.com.co

• Wilson Daniel Giraldo Gómez
 wgiraldo_ext@xm.com.co

• Samuel Sánchez Moreno
 ssanchez@xm.com.co

• Lina Marcela Ramirez Arbeláez
 lramirez@xm.com.co

• iSAAC Project Manager
 William Eduardo Amador Araujo
 weamador@xm.com.co
Consorcio San Francisco Gustavo Adolfo Vásquez Edificadora Constructora S.A.S.

Calle 12 Sur No. 18 - 168 Bloque 2
PBX: (574) 3172244 - Fax: (574) 3170989
Medellín Colombia.

@XM_filiaL_ISA

Todos los derechos reservados para XM. S.A.E.S.P