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Factors that cause SDQ issues
• The synchrophasor provides high sampling data which are prone to anomalies.
• These measurement anomalies can be outlier or a missing data.
• These results due to loss of data, GPS sync problem, incorrect measurements etc. 

Impact of SDQ on Applications
• The anomalous data can lead to performance deterioration of various application 

using PMU measurements.
• Once enough PMUs are deployed, it is very important to ensure the quality of 

PMU data as control actions might depend upon it.

Solutions
• The traditional Bad Data detection algorithm do not perform satisfactorily for data 

driven applications as real time requirement is a priority.
• An Ensemble Based Technique, with less or no parameter tuning, improves 

performance using unsupervised learning method to detect data anomalies.
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In this work three base detectors have been considered:

1. Chebyshev
2. Regression
3. DBSCAN

“No single winner” i.e. if all the above mentioned base detectors are applied 
individually desired level of accuracy could not be acheived.

Each Base Detectors give their output of bad data as D1, D2, D3. Which is 
then converted into score fi ,fj ,fk .

Base Detectors Convert to 
Score Normalization

D1, D2, D3X
Input 
Data 

Window

fi ,fj ,fk
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Example: Score definition for Chebyshev

• A and B are the two outlier points in the present window.
• In this case, the score is determined by the distance between outlier and the

threshold. The longer the distance, the larger the score, so the point is more likely
to be an anomaly data.

• The “score” for each base detector are calculated using the distance criteria .
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The score for each base detector is converted to probability estimates [1]:

1. Probability of outlier for point ‘i’ using Chebyshev : 
where,     is the corresponding outlier score.

Similarly probability using linear regression and DBSCAN is given by,
2. Linear Regression :

3. DBSCAN:

The vector of probabilities for three detector is denoted as FNormalized

[1] Jing Gao; Pang-ning Tan, ” Converting Output Scores from Outlier Detection Algorithms into Probability Estimates”
..\..\PMU bad date detection_paper\coding\J.C.platt. probabilistic outputs (two parameter optimization problem)\converting 
scores to probability estimates.pdf

Normalizationfi ,fj ,fk FNormalized

if
( | )chebyshev iP O f

( | )regression iP O f

( | )DBSCAN iP O f
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Compute:
Sensitivity      which is the fraction of correctly identified outliers

And Specificity       which is the fraction of correctly identified non-outliers

iψ

iη

Calculate Weights:

Calculate weighted score:



Inference and Outlier Detector

Using YMLE and 
new Data Set 
label Outliers

α ,β i.e. the learned 
model 

Normalized 
Score Outliers Detected

• After the MLE-Ensemble step, weights of each base detector is learned which is 
YMLE .

• Now on the new data set using these weights and the Normalized scores of the 
base detectors the inference algorithm makes decision on bad data.

FNormalized
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• There are several missing 
and bad data in the 
voltage measurement as 
observed in this figure.

Raw Industry Voltage Data

Clustering on Industry Raw Voltage Data

• The instances of missing 
and bad data results in 
incorrect clustering (16 
clusters Detected) and 
hence badly prepared for 
event detection. 

*Thanks to EPRI

• These cluster in voltages 
suggest that an event 
capable of causing 
voltage change has 
occurred.



16

• The anomaly detection 
algorithm filters missing 
data and replaces bad data.

Clean Industry Voltage Data

Clustering on Clean Industry Voltage 
Data

• Different clusters which 
are detected previously, 
are grouped as single 
cluster and hence no 
wrong event detection
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Estimation 
Method Error

PMU data 
without 
anomaly

4% anomaly 
magnitude 

& 0.4% 
density

Ensemble 
based 

cleaned data

Constrained 
least square

% Error 
in Z 1.53 27.05 1.51

% Error 
in I 2.39 40.9 2.37

% Error 
in P 0.73 12.07 0.72

Effect of Bad Data on Load Modeling 

• ZIP estimation error is less 
for PMU data without 
anomaly for both Least 
Square and Constrained 
Least Square methods. 

• Maximum PMU data 
anomaly of 4% magnitude 
is incorporated with 0.4% 
anomaly density.

• PMU data anomaly results 
in the error of ZIP 
estimation to increase 3 
folds for certain cases.

• Detected anomalies are 
removed and replaced by 
interpolated value.
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Machine 1
(PMU)

Machine 2
(PMU)

Bus 3

Fault

The fault is created at Bus 3 for 100ms and 
0.1pu fault level. 
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• The eigen values 
without anomalies are 
in the right side of the 
plane. 

• It can be seen that the 
missing data changes 
the location of the eigen
values with one in left 
part. 

• The ensemble based 
clean data brings the 
eigenvalue close to the 
original eigenvalues. Effect of bad data on Small Signal Stability
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Recall Precision False positive

Linear Regression 0.9021 0.8565 0.1435

DBSCAN 0.8821 0.8821 0.1179

Chebyshev 0.9154 0.8754 0.1246

MLE ensemble 0.9251 0.8913 0.1087

Tests on the RTDS simulated PMU data (1.5 hours, 5% bad data points, 5%-10% range)

Recall Precision False positive

Linear Regression 0.7854 0.7655 0.2345

DBSCAN 0.7216 0.7015 0.2985

Chebyshev 0.8125 0.7542 0.2458

MLE ensemble 0.8912 0.9021 0.0979

Tests on the RTDS simulated PMU data (1.5 hours, 10% bad data points, 10%-20% range)






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• PMU data with bad measurements can result in failure of Power System 
Applications.

• A single method is not sufficient to solve the bad data problem.
• An integrated methods called as base detectors is required.
• The MLE-Emsemble produces a result equivalent to or better than all the base 

detectors.

Advantage of the ensemble based method:-
• Plug in more base detectors as needed, which will continuously improve the 

method.
• Little or no effort in parameter tuning
• Unsupervised, but works well with more training data
• Established and well-supported data mining and machine learning.

• This algorithm can work for real time streaming PMU, and can help in realizing 
close-loop Control Systems.

• Integrating bad data detection into applications can result into ‘quality-aware 
applications’
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