Phase Angle Calculations: Considerations & Use Cases

KEN MARTIN, EPG EATT PHASE ANGLE PAPER TEAM NASPI WORK GROUP MEETING OCTOBER 2016

Acknowledgment

- •Jeff Anderson, BPA
- •Dan Brancaccio, Bridge
- •Jeff Dagle, PNNL
- •Harold Kirkham, PNNL
- •Jim Kleitsch, ATC
- •Dmitry Kosterev, BPA
- •Ken Martin, EPG
- •Jim McNierney, NYISO
- •Vincent Minden, BPA

- •Ryan Nice, PJM
- •Ryan Quint, NERC
- •Alison Silverstein, NASPI
- •Kyle Thomas, DVP
- •Mani Venkatasubramanian, WSU
- •Chuck Wells, OSIsoft

Phase Angle Formulation

- PMU reports measured values time-tagged to UTC
 - Amplitude
 - Phase Angle
 - Frequency
 - Rate of change of frequency (ROCOF)
- Signal can be modeled as *x(t)* and the Synchrophasor is calculated relative to the nominal system frequency synchronized to UTC:

 $x(t) = X_{\rm m}(t) \cos(2\pi f_0 t + \varphi(t))$

- The synchrophasor is: $X(t) = (X_m(t)/\sqrt{2})e^{j(\varphi(t))}$
 - The synchrophasor includes all the dynamic changes in amplitude and phase angle
 - Off-nominal frequency appears as a change in phase angle

Frequency & Angle Example

- Off-nominal frequency $f = f_0 + \Delta f$:
- Signal formula is: $x(t) = X_m \cos(2\pi(f_0 + \Delta f) t + \varphi) = X_m \cos(2\pi f_0 t + 2\pi\Delta f t + \varphi)$
- Then the synchrophasor is: $X(t) = X_m/\sqrt{2} e^{j(2\pi\Delta f t + \phi)}$ $\phi(t)$
- Constant f off-nominal results in angle increasing/decreasing linearly

PMU Window Measurement

- A PMU examines the signal over short time (measurement window)
 - Generally a few cycles
- It estimates the phase angle at each point and resolves the answer to a principal value θ where $-\pi < \theta \le \pi$.
 - The PMU only estimates phasor angle, it does not track time error
 - In a time plot, PMU may appear to "wrap" but that is not something a PMU does... It is an artifact of the way we resolve angle to the principal value

Accumulated Phase

As frequency varies off-nominal, phase angle will vary

- System frequency > nominal, the phase angle increases
- System frequency < nominal, the phase angle decreases</p>
- Phase angle may decrease for period of time and then increase for some time

Accumulated phase can be tracked based on some starting point

The Issues

- •To calculate phase angle between two measurements, we have to be sure they do not span the 180° rollover
- •As they rotate with off-nominal frequency, they do not roll-over at the same time and create a spike in the measurement
- •We may want to record the accumulated system time error through the accumulated phase angle

Solution approaches

- Each time angle differences are calculated, resolve them into their principal value (subtract then unwrap)
- Monitor each angle from some starting point and add the full circle (360°) to an accumulated phase angle value each time it rolls over (unwrap the angle). Calculate all angle differences from these unwrapped angles
 - Starting points have to be unwrapped initially
- Both approaches assume there will be no real angle differences that are greater than 180°. In fact, given any two angles, it is impossible to determine angle differences >180° without additional information
 - Angles at intermediate points
 - Flow calculations with equipment and line parameters (state estimation)

Angle Wrapping Definition

Angle Unwrapping Definition

Unwrap Then Subtract

Subtract Then Wrap

```
double UnwrapAngleDelta(double AngleDelta)
{
    double rval = AngleDelta;
    if (Math.Abs(AngleDelta) > 180)
    {
        if (Math.Sign(AngleDelta) > 180)
        {
            if (Math.Sign(AngleDelta) < 0)
        is AngleDelta negative?
            { rval = AngleDelta + 360; }
            else // AngleDelta is positive
            { rval = AngleDelta - 360; }
        }
        return (rval);
}</pre>
```


This approach lets the computer math formulation resolve the angle. This works because vector (and complex number) math works in rectangular coordinates which do not have a roll over and resolves the answer to the principal value.

$$\alpha_{Diff} = \angle (\overline{V}_1 \cdot \overline{V}_1^*)$$

V1 = 1+0i; V2 = 1+1i; dDiff = angle(V1*conj(V2))*180/pi % in degrees

Phase Angle Difference Calculation Considerations

	Simple	Unwrap Then	Subtract Then	Vector
	Arithmetic	Subtract	Wrap	Mathematics
	Subtraction			
EMS Calculation	Achievable	EMS	Achievable	Not possible
Capabilities		computation		
		limitations		
Calculation	Poor, when raw	Accurate calculation. Same level of accuracy.		
Accuracy	angles wrap			
Calculation	Fast			Slow
Speed				
CPU Usage	Minimal			
Data Storage	Minimal	High	Moderate	Minimal
Missing Data	Minimal issues;	Missing data can	Minimal issues;	Minimal issues;
Issues	only calculations	result in wrap	only calculations	only calculations
	with missing	around points	with missing	with missing
	data voided	getting missed	data voided	data voided
Angle Resetting	None	User can specify	None	None
		rate of		
		resetting ⁴		
Application	Not acceptable		Acceptable	-
Requirements				
Absolute Time	Not achievable	Required	Not achievable	Not achievable
Error Correction				

Accumulated Phase Angle Difference

- Phase angle reported by a PMU is defined as the principal value (PV) of the signal relative to the reference waveform synchronized to UTC.
- PMU is not designed to keep track of evolution of relative phase of two signals since some arbitrary time zero.
- •A PMU could be built to track accumulated phase
 - The user would have to establish a start time
 - Accumulated phase can become arbitrarily large, so a reset mechanism is required
 - Phasor value reporting would need modification to report very large values
- Accumulated phase can be calculated or obtained from the PMU signals by "unwrapping" the measurement over a period of time.
- •This is effectively an alternative to calculating system time error used in SCADA systems

Phase Angle Distance

Rollover Counter (ROC)

For keeping track of the number of roll-overs that have occurred

Concluding Remarks

- •Applications must account for principal value of phase angle reported by PMU resolving to interval (+180,-180] in any calculation
- •Applications should document and clearly define angle wrapping and unwrapping they use for industry reference
- •Commonly used angle difference calculation methods explained in detail.
 - Vector math is "gold standard" computationally complex but useful for offline applications
 - "Subtract then Wrap" and "Unwrap then Subtract" both accurate and their pros and cons
 - Simple arithmetic difference should be avoided
- •Considerations include speed, accuracy, CPU usage, data storage, missing data, etc.
- •Phase Angle Distance and Rollover Counter (ROC) introduced