

NASPInet 2.0 Update Briefing Mar 22-23, 2017

Jeffrey D. Taft, PhD Chief Architect for Electric Grid Transformation Pacific Northwest National Laboratory

Assessment of Existing Synchrophasor Networks

NASPInet 2.0

Purpose

- Learn from implementation experiences
- Assess possible need for specification revision
 - what was useful; what was not
- Consider:
 - emerging technologies
 - emerging use cases
 - new/revised systemic issues and priorities
- Guidance, not binding specification

Original Specification Set

 Data Bus Technical Specifications for North American Synchrophasor Initiative Network

North American SynchroPhasor Initiative

Phasor Gateway
Technical
Specifications for
North American
Synchrophasor
Initiative Network

Specification Analysis

- Data bus specification
 - 155 specifications
 - 6 categories
 - 83 sub-categories
- Gateway specification
 - 234 specifications
 - 8 categories
 - 76 sub –categories
- Three additional large categories of general considerations

Implementation Analysis Process

North American SynchroPhasor Initiative

Analysis Process Detail

- NASPInet specifications were aggregated into five groups:
 - Data bus Structure and Communications basic architecture and operational modes
 - System Integration mechanisms for connecting devices and systems to perform complete functions
 - Sizing, Performance, and Availability design capacity for handling expected data volumes; ability of the network to carry out data transport well in terms of network available bandwidth, latency, jitter, and packet loss; percentage of up time and reachability of input and output ports in a network
 - Security ability of the network to protect data integrity, privacy, and confidentiality; ability to control access to the network, ability to maintain device, network, and application integrity; ability to resist intrusion and to detect and mitigate intrusions when they happen
 - General/Sys Admin/Ops and Functional Specification generic capabilities and best practices in the design, deployment, and operation of networks
- Network core and edge structure added
- Use of advanced open standard protocols added

Source Materials for Analysis

- NASPI Working Group SGIG Update presentations
- NASPI Work Group presentations
- NASPI Work Group Success Story presentations
- NASPI Reliability Coordinator Data Quality Survey (March 2016)
- NASPI 2014 Survey of Synchrophasor System Networks – Results and Findings (July 2015)
- Various presentations from utilities

Next Steps for Analysis report

- Review DNMTT?
- Revisions as needed
- Report release

New Specification Development

NASPInet 2.0

NASPInet 2.0 Document

- Will again be guidance and framework
- Update of original specification in light of experience
 - streamlining of the material
- Additional considerations:
 - emerging technologies
 - forward-looking use cases
 - wider area closed loop protection and control
 - adaptive protection
 - new/revised systemic issues and priorities
 - more focus on cyber security

NASPInet 2.0 ToC Draft

- Background and Purpose
- Scope
- Key Architectural Principles
- Core Requirements
- Problem Domain Reference Model
- Architectural Specifications and Recommendations
- Guidance on Newer/Emerging Technologies
- Appendices (as needed)

Core Requirement Categories

- scalability
- latency minimization
- reliability/(min packet loss)
- cybersecurity
- performance
- functional flexibility
- data persistence

- open standards usage/conformance
- data sharing
- data rates
- availability
- extensibility
- service classes
- governance

Problem Domain Reference Model

- Describes the problem environment
- Emerging trends & systemic issues
- Regulatory/public policy issues
- Key constraints & barriers
 example: geographic constraints
- Entity-relationship (industry structure) model(s)
- Logical/data flow model(s)

Specification & recommendations

- Function class definitions (capabilities)
- Component class definitions (devices and systems)
- Communication networks
 - structures/topologies (intra-utility, WAN)
 - protocols, operating modes
 - network provisioning/monitoring/management: AAA; ZTD, FCAPS
 - QoS management
 - timing distribution
 - network level cyber security
- Systems- structures and interfaces; system level security
- Standards

Newer/Emerging Technologies (compared to original spec time frame)

- Software Defined Networking
- Cloud Services
- Network Virtualization
- Distribution level synchrophasor measurement

Next Steps

- Inputs from DNMTT and elsewhere
- Draft document
- Review process
- Finalization

Thank You

Jeffrey D. Taft, PhD jeffrey.taft@pnnl.gov

