Online Calibration of Phasor Measurement Unit Using Density-based Spatial Clustering

Di Shi, Xinan Wang, Zhiwei Wang, Xiao Lu*, Chunlei Xu*, Zhihong Yang+

GEIRI North America, Santa Clara, CA, USA *State Grid Jiangsu Electric Power Company, Nanjing, China +NARI Technology Co., Nanjing, China

> 2017 NASPI Work Group Meeting Gaithersburg, March 22, 2017

GEIRI North America

Key Facts

- Founded in Dec. 2013 in Santa Clara, CA (<u>www.geirina.net</u>)
- Conducts cross-disciplinary R&D for power system modernization
- R&D subsidiary and overseas platform of State Grid Corporation of China
- 30+ Researchers and Engineers (recruiting)

Research Groups & Areas

- Graph computing & Grid Modernization
- Smart Chip & IoT
- PMU & System Analytics
- AI & Its Applications

Collaborations - Present

- Stanford, MIT, Berkeley, FSU(CAPS), Clemson and DOE Labs
- UTK (CURENT), ASU (PSERC)

Outline

• Power System Parameter Calibration System (PSPCS) framework

• System Implementation

Problems Description

- A lot of research has been conducted in the area of power system network/equipment parameter identification using PMU data.
 - Transmission line
 - Transformer
 - Generator
 - Load, etc.
- Generally speaking, parameter identification depends heavily upon the quality of measurements (sensitivity analysis).
- PMU data are expected to be highly accurate and reliable, BUT this potential accuracy and reliability are not always achieved in actual field installation due to various causes.
- Problems in practice
 - 1) how credible are the results obtained from our algorithms?
 - 2) what can be done when we see significant discrepancy?

PMU Data Quality

- Measurement chain
 - Instrumentation channel (PT/CT, control cables, burdens, filters, A/D converter)
 - PMU (GPS synchronized)
- Ideally, PMU device is supposed to have time tagging accuracy better than 1 microsecond (0.02 degrees @ 60Hz), and magnitude accuracy better than 0.1%.
- In practice, the instrumentation channel can introduced errors that are of magnitude higher than the PMU device itself².
- Impacts of the measurement chain can be summarized as:
 - Random error (random in either direction)
 - Bias error (consistent in the same direction)

Fig 1. Typical PMU measurement chain¹

Table 1. Maximum Possible Error Introduced by the Instrumentation Channel in A Typical 230-kV System

Source	Voltage Phasor				Current Phasor			
of Error	Magnitude (%)		Phasor Angle (degree)		Magnitude (%)		Phasor Angle (degree)	
PT/CT	0.6		1.04		1.2		0.52	
Cabling	100 ft	400 ft	100 ft	400 ft	100 ft	400 ft	100 ft	400 ft
	0.009	0.009	0.115	0.411	0.066	0.066	0.03	0.09
PMU	0.1		0.02		0.1		0.02	
Total	0.709	0.709	1.175	1.471	1.366	1.366	0.57	0.63

What has been achieved so far?

- Transmission line parameter identification (as an example)^{1,2,3}
 - Line models: lumped vs. distributed
 - No. of measurements: single, two, multiple
 - Linear solution vs. nonlinear solutions
 - Direct vs. indirect approaches (two-port network)
 - Single-phase model vs. three-phase model
 - Positive-sequence only vs. three-sequence model
- Sensitivity analysis

Fig. 1-2 Sensitivity analysis

Fig. 3 Models & approaches

Results from Real Data (Line *R* Calculation)

Credibility Metric & PSPCS

- In general, it is very difficult to determine the credibility of the calculated parameters
 - true values are unknown
 - comparisons are difficult to make
- A credibility metric is of critical importance in practice for applications like such and so.
- A bootstrapping based technique is proposed.
 - random sampling with replacement
 - estimating properties of estimator
- Credibility metric: $\delta(x)/x_{ref} \le \varepsilon$

PMU Data Calibration

- Parameter identification was developed as a database/data screening tool.
- Existing approaches for PMU data calibration
 - Offline testing/calibration
 - Model-based approaches
- Limitations of existing approaches
 - Offline: unable to compensate error from instrumentation channel
 - Model-based: parameters need to be known *a prior* (not practical)
- Our approach: online calibration of the overall bias error in PMU data without knowing the exact model

 $Z = \frac{\overline{V_s}^2 - \overline{V_r}^2}{\overline{I_s} \cdot \overline{V_s} - \overline{I_s} \cdot \overline{V_s}} \qquad \qquad Y = 2 \cdot \frac{\overline{I_s} + \overline{I_r}}{\overline{V_s} + \overline{V_r}}$

Fig. PMU calibration equip.¹

errors

$$\partial R = A_R \partial V_s + B_R \partial V_r + C_R \partial I_s + D_R \partial I_r + E_R \partial \theta'_{V_s} + F_R \partial \theta'_{V_r} + G_R \partial \theta'_{I_s}$$

$$\partial X = A_X \partial V_s + B_X \partial V_r + C_X \partial I_s + D_X \partial I_r + E_X \partial \theta'_{V_s} + F_X \partial \theta'_{V_r} + G_X \partial \theta'_{I_s}$$

$$\partial B_c = A_B \partial V_s + B_B \partial V_r + C_B \partial I_s + D_B \partial I_r + E_B \partial \theta'_{V_s} + F_X \partial \theta'_{V_r} + G_X \partial \theta'_{I_s}$$

A Data Mining Approach^{1,2}

• Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised data mining technique, which is able to classify data points of any dimension into *core points*, *reachable points* and *outliers*.

Fig. 1 Schematic diagram of DBSCAN with minPts=4

• Constraints: error bands for EMS references

Fig. 2 Feasible region for transmission line impedances

¹X. Wang, D. Shi, Z. Wang, etc., "Online calibration of Phasor Measurement Unit using density-based spatial clustering," IEEE Trans. Power Delivery, 2nd round review. ²X. Lu, D. Shi, B. Zhu, etc., "PMU assisted power system parameter calibration at Jiangsu Electric Power Company," IEEE PES General Meeting, 2017.

Algorithm Flowchart

- \succ Form the *H* matrix
- Conduct LSE iteratively with the points selected inside the feasible region
- DBSCAN clustering
- Compare the clusters and find out the biggest cluster with minimum searching distance
- Decode the cluster information into PMU data bias error information
- Calibrate PMU data according to the clustering result

Fig. Algorithm flowchart¹

Numerical Results (Simulated Data I)

• Case I: One referenced impedance has error (-2% in *R* in EMS database; 0.01pu error in magnitude is added to sending-end current phasor)

Numerical Results (Simulated Data II)

• Case II: -4% error and -6% error are considered for R_{EMS} and X_{EMS} , respectively; bias errors of 0.01 p.u. and 0.00175 rad are added to V_s and θ_{Vr} , respectively.

Fig. DBSCAN clustering results

Results with Real Data

- Cluster result is plotted in 3-D. X, Y, Z axis's correspond to errors in R_{EMS} , X_{EMS} and B_{EMS} .
- Colors of points represent the cluster size. As color become warmer, cluster size increases.

Calculated **Calculated Error in** p.u. or rad R Х B_C $(\times 10^{-3})$ (%) (%) (%) ∂V_s -0.0032 ∂V_r -0.0033 ∂I_s 0.0171 ∂I_r 0.0164 -14.06.4 12.6 $\partial \theta'_{VS}$ 0.0003 $\partial \theta'_{Vr}$ 0.0027 $\partial \theta'_{IS}$ -5.6238e-5

Fig. Results for "Huadong-Tianhui Line #5621"

- PMU data collected from "Huadong-Tianhui Line #5621" in Jiangsu Electricity Power Grid has been used.
- Test result shows a -14% error in R_{EMS} , 6.4% error in X_{EMS} , 12.60% error in B_{EMS} .

Table Result Summary

Outline

- Power System Parameter Calibration System (PSPCS) framework
- System Implementation

PSPCS Implementation

- GEIRI North America partnered with NARI group to implement PSPCS at the grid dispatch center of Jiangsu Electric Power Company.
- NARI is a key manufacture subsidiary of State Grid Corporation of China.
 - largest whole set supplier of electric power equipment
 - provide technologies, products, services and total solutions for utilities, railway transportation, industrial control

NARI WAMS master station				
Connected PMU stations (If measurements number of each station <100)	>800			
Data frame	25~120/s			
Measured point scale	>100k			
Performance of database	3M events/s			
Compression of His data	lossless / loss			
Time for query 1hr his data of 1 point	<1s			

Table Features of NARI WAMS master station

NARI WAMS Architecture

NARI WAMS

NARI PMU Performance

NARI PMU Substation AD Sample Or IEC61850-9-2 SV 48 Binary Input Or GOOSE 46 DC Output(4-20mA) 2 Storage **256GB** Time Synchronization Accuracy <1µs Time Keeping Accuracy <10µs/h

Real-time Data Service

History Data Service

			Level 1	Substation Data S	torage
Data Type	Format	Feature		Туре	Capacity
			PMU	Fault Record	1000 items
		Fs = 4000Hz;		Continuous Record	72 hours
Fault	*.cfg	Sample Values;		Dynamic Record	21 days
Record	*.dat	Each record for			
		15 seconds ;	Level 2	Туре	Capacity
		$F_{s} = 1000 H_{z}$:		Fault Record	1000 items per PMU
Continuo-	*.cfg	Sample Values:		Continuous Record	72 hours per PMU
us Record	*.dat	Each record for		Dynamic Record	21 days
		60 seconds;			
		$E_{c} = 100 H_{7}$			
Dynamic	* dyn	$F_{S} = 100HZ$, Each record for	Level 3	Dispatch Center	Data Storage
Record	.uyn	60 seconds:		Ture	Constaint
			WAMS	Туре	Capacity
				Dynamic Record	>1 months per PDC

PMU Coverage at Jiangsu

- Jiangsu Electric Power Company, the biggest provincial utility in China, owned by State Grid Corporation of China.
- Peak load reached 92GW in 2016, installed generation capacity 100GW, power imported from west and northwest China 15GW.
- 100% PMU coverage at 500kV and above substations.
- Majority of 220 kV substations.
- Major power plants.
- A total of ~160 PMUs (still increasing).
- All renewable power plants.
- Thousands of data channels.

Fig. PMU coverage in Jiangsu

System Implementation at Jiangsu Electric Power Company

WAMS Application Platform

An Advanced EMS is being framed and developed with more sophisticated data, SCADA + WAMS

Now & Future

Real-time Functions	Day-ahead Functions	Management Functions			
EMS-SCADA	Day-ahead Markot	Work Flow			
AEMS-wams/scada	Schedule	Assets Management			
DSA	HYA	OMS			
Uniform Service : Power Grid Model & Graphics & Communication & Data Exchange & System Management Utility					
Union SG-OSS Platform D5000					

Openness, Standardization, Visualization, Service Oriented, Reliability, Security.

Summary

- An online power system parameter screening tool has been developed and implemented.
- A novel PMU data calibration approach & system has been developed and implemented.
- Significance of contribution: online PMU data calibration without knowing accurate system model (by-product: more accurate system models & parameters).
- Future work includes:
 - Extending the work to simultaneous calibration of multiple PMUs
 - Parallelizing the algorithm to improve computational efficiency

Thank you!

