Analysis of Events using Phasor Measurement
(The Experience of Medfasee Project)

Sergio Zimath
Reason Tecnologia S.A.
Ildemar Decker
Federal University of Santa Catarina

NASPI Meeting Chattanooga, TN
October 8th, 2009
The MedFasee Project
(Main Characteristics)

- Project started in 2003

- Project Characteristics:
 - Development of a prototype
 - Study, dissemination and educational use of the WAMS technology
 - Applications for power system monitoring, control and fault location

- All hardware and software components were developed by the MedFasee team
MedFasee Project
(Structure and Geographical Location)

- Five geographical regions are covered (9 universities)
- Virtual Private Network over Internet for communication
The MedFasee Eletrosul Project

- First installation in a 500kV system in Brazil
- Main transmission utility of south
- 4 PMUs and 1 PDC
- Applications for monitoring tools and fault location
- Power system performance analysis
PMU – RPV Reason

- Multifunctional device
 - PMU
 - Digital Fault Recorder
 - Power Quality Recorder
 - Continuous Recorder
 - Travelling Wave fault locator
 - More…

- IEEE C37.118 compliant
 - ONS testing at NIST: conditionally passed

- Sending 60 phasors per second (3Φ)
- Link Ethernet and UDP/IP protocol
- Configurable to 10, 12, 15, 20, 30 and 60 phasors per second and positive sequence
Selected cases

- 01/09/2006 - Generation dropping in a coal thermal plant
 - Comparison between simulation and measured oscillations

- 07/04/2009 – Special protection schema Itaipu (14000 MW) – Tucurui (8340 MW)
 - Measured oscillations modes and damping

- 10/04/2009 – System splitting in 2 islands
 - Causes not yet identified

- 09/08/2009 – Transmission line tripping
 - Fault location using phasors from both terminals

- Unbalance in 525 kV lines
 - Positive sequence errors
01/09/2006 - Generation Unit Tripping

- Disturbance detection
 - Generator unit tripping from a coal thermal plant
 - Jorge Lacerda – 343 MW;
An oscillation mode of 1.14 Hz was identified and attributed to a local oscillation mode of J. Lacerda
The same mode appears in the event simulation!

Table 1 - Oscillation mode damping

<table>
<thead>
<tr>
<th>Damping (ζ)</th>
<th>Measured (%)</th>
<th>Simulated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ₁</td>
<td>10.1</td>
<td>13.5</td>
</tr>
<tr>
<td>ζ₂</td>
<td>6.2</td>
<td>7.1</td>
</tr>
</tbody>
</table>

JLacerda B (Units 5 and 6) Rotor Angle

Reference: Itaipu 60 Hz

- Frequency = 1.2Hz
- Damping (t₁-t₂) = 13.5%
- Damping (t₂-t₃) = 7.1%

-62,688 degrees; t₁=1,038s
-66,877 degrees; t₂=1,857s
-68,006 degrees; t₃=2,703s
Main oscillation modes of Brazil

- North-South: 0.20 - 0.40 Hz
- South-Southeast: 0.60 - 0.80 Hz
- North-Northeast: 0.55 - 0.65 Hz
- MG state - System: 0.40 - 0.45 Hz
- RIO - System: 1.10 - 1.30 Hz
- Sao Paulo - System: 0.65 - 0.75 Hz
07/04/2009 - Special Protection Schema tripping

◆ Characteristics:
 – Automatic dropping of generation in Itaipu and in Tucurui
 – Maintain integrity of the system after losing 765 kV circuits from Itaipu transmission
 – Power plants are 2200 miles apart
 – 33 milliseconds delay for signal transmission

◆ SPS raised in 900MW the transmission capacity from North-SouthEast

Generation shedding: 576 MW

Generation shedding: 2300MW
07/04/2009 - Special Protection Schema tripping

◆ Characteristics:

- One-phase short circuit followed by the tripping of two circuits C1 and C2 from 765kV Foz do Iguaçu – Ivaiporã.
- Generation dropping of 4 units of Itaipu and 2 units of Tucurui.

◆ Frequency Behavior

![Graph showing frequency behavior]

- Distribution system
- Transmission system
07/04/2009 - Special Protection Schema tripping

- **Inter-area System Oscillations**

![Graph showing Inter-area System Oscillations](image)

Transmission system

Distribution system

Frequência do SIN - SPMS MedFasee

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>59.65</td>
</tr>
<tr>
<td>135</td>
<td>59.7</td>
</tr>
<tr>
<td>140</td>
<td>59.75</td>
</tr>
<tr>
<td>145</td>
<td>59.8</td>
</tr>
<tr>
<td>150</td>
<td>59.85</td>
</tr>
<tr>
<td>155</td>
<td>59.9</td>
</tr>
</tbody>
</table>

Tempo (s) - Início: 04/07/2009 21:35:00 GMT
07/04/2009 - Special Protection Schema tripping
(Measured electro-mechanical oscillations modes)

- North - South mode:
 - Frequency: 0.36 Hz
 - Damping: 5.99 %

- South-Southeast mode:
 - Frequency: 0.62 Hz
 - Damping: 8.82 %
07/04/2009 - Special Protection Schema tripping

- The special protection scheme actuated again in 22/07/2009 with generation shedding of 3180 MW from Itaipu and 627 MW from Tucurui for a different disturbance (tripping of 3 x 765 kV lines)
10/04/2009 - System islanding

Description

- Started 18:39
- Opening of several interconnections
 - Gurupi-Miracema (LT A)
 - Serra da Mesa – Samambaia (LT B)
 - Serra da Mesa – Rio das Éguas (LT C)
 - Rio das Éguas – Bom Jesus da Lapa (LT D)
- Consequences
 - 2 separate systems: N/NE e S/SE
 - Load shedding in N/NE: 2550 MW
 - Some generation dropping in S/SE
- Restoration:
 - 18:47 – Closing of N/NE - SE
 - 19:21 – Closing of SE - NE
10/04/2009 - System islanding

Frequência do SIN - SPMS MedFasee (com filtro)

Frequência (Hz)

Tempo(s) - Início: 04/10/2009 18:37:00 (local)

UnB
USP-SC
PUC-RS

Inicio da Falha

Frequência do SIN - SPMS MedFasee

Tempo(s) - Início: 04/10/2009 18:37:00 (local)

UNIFEI
UnB
COPPE
USP-SC
UTFPR
UFSC
PUC-RS
Oscillation in S-SE – 0.57Hz
10/04/2009 - System islanding

- Parcial reclosing
10/04/2009 - System islanding

- Oscillation S-SE – 0.63Hz
- Oscillation N-S – 0.3Hz
10/04/2009 - System islanding

- Complete reconnection
10/04/2009 - System islanding

- S-SE – 0.59Hz.
- N-S – 0.36Hz.
- Local Oscillation in South 1Hz.
09/08/2009 - 525 kV Transmission Line Tripping

- Strong winds in the region
09/08/2009 - Transmission Line Tripping (Fault location with syncrophasors)

1st fault and tentative reclosure

- Corrente na LT Ivaiporã - Areia
- Corrente LT Areia - Ivaiporã

Eventos:
- Evento 1
- Evento 2
- Evento 3
- Evento 4
09/08/2009 - Transmission Line Tripping (Fault location with synchrophasors)

- Several 2 terminal algorithms were used
- Errors between 6 and 4 miles (5% - 4% of line length)
- Sub cycle protection interrupt the fault before a stable cycle exists
Unbalance in 525 kV line
(Current unbalance measured from both terminals)

- Up to 10% in both sides
- Does positive sequence represent this line?
Thank you!

◆ Sergio Zimath
 – Reason Tecnologia S.A.
 – E-mail: sergio.zimath@reason.com.br

◆ Ildemar Decker
 – Federal University of Santa Catarina
 – E-mail: decker@labplan.ufsc.br