Measurement-Based Real-Time Voltage Stability Monitoring for Load Areas

Kai Sun, Fengkai Hu

University of Tennessee, Knoxville

Alberto Del Rosso, Evangelos Farantatos and Navin Bhatt

Electric Power Research Institute

NASPI Meeting in Atlanta

3/24/2016

Content

- Background on measurement-based voltage stability assessment
- •A new measurement-based VSA method and its comparison with the Thevenin method
- Demonstrations of the new method

Simulation/model based Voltage Stability Assessment

- Strengths
 - Look-ahead capabilities in stability prediction and control for "what-if" scenarios
 - Lots of commercial software tools.
- Limitations in Online Application
 - Model-dependent: the accuracy depends on how accurate the power system models is
 - **Contingency-dependent**: only applied to selected critical contingencies
 - Requiring a steady-state powerflow solution: the state estimator may fail to converge under stressed operating conditions.
 - **Computationally intensive**: especially for dynamic simulations

• An alternative approach is Measurement-based VSA

Methods for Measurement-based VSA

[1] P. Zhang, L. Min, J. Chen, Measurement-based voltage stability monitoring and control, US Patent 8,126,667, 2012

[2] F. Hu, K. Sun, A. Del Rosso, E. Farantatos, N. Bhatt, "Measurement-Based Real-Time Voltage Stability Monitoring for Load Areas," IEEE Trans. Power Systems, 2016 (DOI: 10.1109/TPWRS.2015.2477080)

New MB-VSA Method based on an N+1 buses Equivalent

Derive the transfer limit of tie line i with respect to a load change near bus j as a function of all parameters of the equivalent

$$\frac{\partial P_i(y_{11}, \cdots, y_{NN})}{\partial y_{jj}} = 0 \quad \rightarrow \quad P_{i,j}^{\text{Max}}$$

Offline place PMUs on boundary buses of the load area for voltage stability monitoring

Measure real-time voltage and current phasors

Estimate all parameters of the equivalent using phasor data over a sliding time window

Calculate transfer limits of all tie lines by analytical expressions on P_{ij}^{max}

Real-time limit and margin information for operators

For a load area fed by multiple tie lines

- Traditional Thevenin method
 - Only estimates the total transfer limit of all tie lines
- •New MB-VSA method
 - Estimates the transfer limit for each line and can better detect and control voltage instability if any line hits its limit earlier than the others
 - Gives the limits of each line with respect to different scenarios of load changes
 - More accurate in estimating the total transfer limit by considering the coupling among boundary buses

Influence from the coupling of boundary buses

Demonstration on the NPCC 140-bus System

Voltage collapse caused by a generator outage in the load center and load increase

Comparison of two MB-VSA methods

Time (s)

Limits (MW)

P vs.]

P^{Max} 35.35 Limits (MW) vs. Limits (MW) P^{Max} 35.31 p^{Max} 35.5 P₃₁ Š. P^{Max} 31.35 Ч₆ P^{Max} 31,31 ц. М P^{Max} 31,5 **D**Max 5.5 500 L 100└ 0 Time (s) Time (s) Time (s) Thevenin method Zero margin at t=473s Positive margin and limit (MW) 5000 when voltage collapse happens. Total tie-line flow

New MB-VSA

Time Performance of the New MB-VSA

Application in Closed-loop Control

- Automatically switch in a shunt capacitor in the load area if any tie line margin drops below 5%
- Voltage collapse is postponed

Application of the New MB-VSA Method in System Operations

Test on a 25k-bus Eastern Interconnection model

CURENT Hardware Testbed System: power converter-based reconfigurable power grid emulator ^[3]

[3] L. Yang, et al, "Development of converter based reconfigurable power grid emulator," 2014 IEEE ECCE in Pittsburgh, PA

Demonstration on CURENT Hardware Test Bed System^[4]

[4] F. Hu et al, "Measurement-based Voltage Stability Assessment and Control on CURENT Hardware Test Bed System," 2016 IEEE PES General Meeting in Boston, MA

Closed-loop control to prevent voltage collapse

Demonstration on CURENT Hardware Testbed System

 Contacts: Navin Bhatt <u>nbhatt@epri.com</u>

> Evangelos Farantatos efarantatos@epri.com

Alberto Del Rosso adelrosso@epri.com

Kai Sun <u>kaisun@utk.edu</u>