Trustworthy Cyber Infrastructure for Power (TCIP)

tcip.itl.uiuc.edu

Himanshu Khurana
University of Illinois

NASPI Meeting, Scottsdale AZ
February 4-5, 2009
• $1.5 M per year for 5 years
• Funded by National Science Foundation CISE and ENG programs
 – With additional support from Department Of Energy, Department of Homeland Security
• 4 universities, 20 senior investigators. 30 Graduate students
 – University of Illinois at Urbana-Champaign
 – Washington State University
 – Cornell University
 – Dartmouth University
• Industry advisory board (35+)
Industrial Partnerships – Spanning Stakeholders

Electrical Power Asset Owners
Ameren – Utility in Mo. and IL
Entergy – Utility in South
Exelon – Utility – Midwest & East
ITC – Transmission company
TVA – Largest public power company

Independent System Operators
CAISO – ISO for CA
MISO – ISO for expanded Midwest
PJM – ISO for 7 states

Technology Providers/Researchers
Argonne Nat’l Lab – Security research
ABB – Industrial manufacturer and supplier
Siemens – Industrial manufacturer and supplier
Areva – SCADA and EMS vendor
Cisco Systems – CIP Researchers
Cyber Defense Agency – Security Assessment
Electric Power Group – PCS Software
EPRI – Electric Power Research Institute
GE – Communication and computing requirements for the power grid
Gehrs Consulting – Power System Consulting
Honeywell – Industrial control system provider
Idaho Nat’l Lab – National SCADA testbed
InStep Software – Equipment Provider
KEMA – Consultants for power systems
Lawrence Livermore Nat’l Lab – Security Research
N-Dimension – Process Control Security Provider
NERC – North American Reliability Corp.
OSI – SCADA and EMS vendor for utilities
OSIsoft – Equipment Provider
PNNL – National lab doing security research
PowerWorld Corp – Analysis and visualization
S&C Electric – Switchgear Manufacturer
Sandia National Lab – SCADA research
Schweitzer – Manufacturer of protection devices
Siemens – Industrial control system provider
SISCO – Power system automation Software
Starthis – Automation Middleware
Sun – Computer Manufacturer
Address technical challenges motivated by domain specific problems in

Ubiquitous exposed infrastructure

Real-time data monitoring and control

Wide area information coordination and information sharing

By developing science and technology in

Secure and Reliable Computing Base

Communication and Control Protocols

Quantitative & Qualitative Evaluation

Education
• Drive the design of an adaptive, resilient, and trustworthy cyber infrastructure for electric power, which operates through attacks by:
 – Protecting the cyber infrastructure
 – Making use of cyber and physical state information to detect and respond to attacks
 – Supporting greatly increased throughput and timeliness requirements

• Support the provisioning of a new power grid that
 – Enables advanced energy applications
 • high-speed monitoring and asset control, advanced metering, diagnostics & maintenance
Related Efforts

• **Roadmap to Secure Control Systems:**
 – energetics.com/csroadmap
 – 97 Projects currently documented (including 10 TCIP projects)

• **Government/National Lab efforts include:**
 – DOE-funded National SCADA Testbed (inl.gov/scada)
 – DHS Control Systems Security Program (us-cert.gov/control_systems)

• **Efforts with Industry engagement**
 – DHS-funded I3P Process Control System Research (thei3p.org/projects/pcs.html)
 – Process Control Systems Forum (pcsforum.org)

• **More generic longer-term research also exists, e.g.,**
 – Berkeley TRUST NSF S&T Center

⇒ TCIP is unique in its focus on long-term issues specific to power grid security, and more broadly, trust.
TCIP Senior Investigators

- **Secure & Reliable Base**
 - Bratus, Gross, Gunter, Iyer, Kalbarczyk, Nakka, Sauer and Smith

- **Communication & Control Protocols**
 - Bakken, Bose, Bobba, Hauser, Khurana, Minami, Nahrstedt, Sanders, Scaglione, Thomas, Wang, Welch, Winslett

- **Quantitative & Qualitative Evaluation**
 - Campbell, Gunter, Khurana, Nicol, Overbye, Sanders, Yardley

- **Education**
 - Overbye, Reese, Sebestik, Tracy

Partner Institutions
- Cornell
- Dartmouth
- University of Illinois
- Washington State University
Vision: Architecture for End-to-End Resilient, Trustworthy & Real-time Power Grid Cyber Infrastructure

Control Center Level

ISO

Coordinator Level

Private IP-Based Network (Secure, Real-time, Monitored)

Network Level

Private IP-Based Network (Secure, Real-time, Monitored)

Private IP-Based Network (Secure, Real-time, Monitored)

Substation Level

Sensor/Actuator Level

Ethernet / IP-Network (Secure, Real-time, Monitored)

“Smart” Gateway/Hub

IED

Local HMI

“Smart” Gateway/Hub

Ethernet / IP-Network (Secure, Real-time, Monitored)

Backup

Ethernet / IP-Network (Secure, Real-time, Monitored)

“Smart” Gateway/Hub

Private IP-Based Network (Secure, Real-time, Monitored)

Metering and Load Control

Other (Metered) Premises

Mobile Sensor

Plugable Hybrid Electric Vehicle

Advanced Meter

Energy Service Provider

Meter Data Management Agency

Independent System Operator

Management Conduit with Home Energy Dashboard (Connected)
• Research papers
 • Tools: hardware and software prototypes
 • Designs of protection, detection and response mechanisms
 • Taxonomies for a common understanding of designs
 • Architectures that integrate designed components
 • Evaluation/measurements that assess impact of attacks and benefits of designs/architectures

• Over 80 papers already published
Research papers

Tools: hardware and software prototypes

- 17 tools developed or enhanced

Trustworthy Computational Base
- Penetration testing (LZFuzz), secure co-processors (CeSium, Faerieplay, RSE), encryption (YASIR), AMI/demand-response (AVR PCT, jXbee)

Trustworthy Communication and Control Protocols
- Reliable and real-time communication (GridStat, iDSRT), trust negotiation (TrustBuilder), encryption (SMOCK), key management (DNSCert), attributed-enhanced email (ABUSE)

Qualitative and Quantitative Evaluation
- Access policy enforcement (APT), power flow simulation (PowerWorld), network simulation (RINSE), security assessment (ASSESS)

Education applets
• Research papers
• Tools: hardware and software prototypes
• **Interactions with Industry Advisory Board**
 • Four industry workshops
 • 20 - 25 industry participants per workshop
 • Day-long visits with formal seminars and discussions
 • Ameren, Applied Control Solutions, EPRI, Gehrs Consulting, GE, NERC, PNNL, SISCO
 • Visits to industry
 • Ameren, Areva, Entergy, MISO, OSII, PJM, PowerWorld, TVA
 • Donations for TCIP test-bed
 • > 1 million dollars worth of hardware, software
 • TCIP Summer School (June 2008)
 • 12 IAB speakers
• Research papers
• Tools: hardware and software prototypes
• Interactions with Industry Advisory Board
• Participation in major initiatives

 • North American Synchrophasor Initiative (NASPI)
 • Automated Metering Infrastructure Security (AMI-SEC)
 • EPRI Power and Delivery
 • Roadmap to Secure Control Systems
 • 10 projects in roadmap
 • Presentations at May’08 workshop
• TCIP Researchers, in partnership with math/science education specialists:

 • Pre-university engagement:
 – Develop pedagogically and technologically sound math and science curriculum materials
 – Utilize these materials to connect with middle and high school teachers and students
 – Provide research experiences to students
• Program Highlights
 – Lectures and discussions on a range of security issues facing control systems
 – Interactive agenda
 – Opportunities to learn about and influence long-term research problems

• Who attended
 – 86 researchers and practitioners from industry, national laboratories and academia

• Who presented
 – 16 expert lecturers from Industry (8), National Labs (3), Government (2) and Academia (3)

Link: http://www.iti.uiuc.edu/events/SummerSchool2008.html

• Sponsors
 ▪ DOE, NSF, DHS
 ▪ PJM, OSI
PMU focused TCIP Research Efforts
• Multi-recipient data sharing
 – Recipients not known at the time of data creation
 – Data sharing based on policy
• Flexible Policy Specification
 – Role, attribute and context based
 – Policy satisfiability may not be verifiable by data owner
 • Grant Access if (Reliability Engineer in Utility X) AND (Utility X in ISO B)
 AND (Overloaded Tie Line between Utility X and Utility A) AND ((Below
 Critical Reactive Power Reserves in Utility X) OR (Reactive Limiters active
 in Utility X))

• Data sharing on open networks
• Policy and data secrecy
• Efficiency and compatibility
• Security
 – against active adversaries
Project 1: Proposed Architecture

Utility 1

- PMU Data
- Sensor Data

Utility 1

- PMU Data
- Sensor Data

Shared-Data Repository

TTP

KDC

Attribute DB

Filter

Context Attributes

Protected Transaction

If *pol* satisfied then release K

\[E_{ISO}(O) = \{PKEM_{ISO}(pol), DEM_{K}(dat)\} \]

where

- \(PKEM_{ISO}(pol) \) encapsulates policy *pol*
- key K
- \(DEM_{K}(dat) \) encapsulates data *dat*
Recent PMU-related research at WSU
(Dave Bakken, Anjan Bose, Carl Hauser)

• GridStat lessons learned -> NASPI-net (Bakken)
 – Example: QoS management capabilities
 – Synchronized rate filtering – network delivers a synchronized subset of measured values

• C37.118 GridStat publisher (Hoffman)
 – Matching the GridStat pub-sub model to the PMU data stream standard

• Two-level PMU-based linear state estimator (Bose and Yang)
 – Fast system-level computation based on distributed computation of individual substation states

• Authentication protocols for long-lived field devices and infrastructures (Mudumbai and Hauser)
 – How can a data delivery service for devices deployed in remote locations evolve with cyber-security developments over several decades

• Assessment of GridStat security (WSU Team, PNL, INL – not TCIP funded but complementary to TCIP work)
 – Identified specific issues in the code
 – Generated ideas for addressing known shortcomings in management plane security
 – Suggested new research topics in area of platform security
Slide at left indicates that during the 8/14/03 event there was a significant angle separation between Cleveland and Western MI. But it also raises some interesting research questions.

A Motivating Example from 8/14/03

Reference: Browns Ferry

Slide source: Robert Cummings (NERC) November 29, 2007
PMU Overview and Update Presentation
• In the Eastern Interconnect the significance of individual bus angles or bus angle differences across different regions is not fully understood.
• We are exploring theoretical and practical issues associated with the interpretation of phase angle differences.
• Useful input data would be a set of state estimator cases to give actual operating conditions coupled with associated PMU measurements.
• Results would (hopefully) be interpretations and visualizations of this data.
• **Motivation**: How can we design and implement a scalable PMU data sharing NASPInet?
 – what kind of bandwidth is needed for NASPInet?
 – how do latency constraints affect bandwidth provisioning and security guarantees?
 – will it scale to multiple applications (current/future) using data from thousands of PMUs?

• **Goal**: To build a modeling framework that will analyze and validate network and storage architectures as well as security technologies suitable for PMU data sharing in a scalable manner
Project 4 Study: WECC Point-to-Point

- **WECC topology**
 - 35 PGWs, 1 PDC per PGW, 100 – 250 PMUs per PDC/PGW

- **Point-to-point communication links**
 - 56 Kbps PMU-PDC link, 4.6 – 9.3 MBPS PGW-PGW links,

- **Standard security mechanisms**
 - hop-by-hop auth. (MAC/Signatures)

- **Distributed storage**
 - everybody stores all data

- **Results**
 - Data for 200PMUs/PGW, 7.72Mbps PWG-PGW link

- Authentication adds ~ 3ms additional (20 byte tx time)
- Signatures feasible when aligning at source
- Storage – Each BA generating 768000 bytes/sec ~ 22TB/year
TCIP Summary

• Vision
 – Design of an adaptive, resilient, and trustworthy cyber infrastructure for electric power

• Approach
 – Unique, holistic, technological approach
 – Academic, Government, Industry partnership

• Execution
 – Maintaining long term focus, but developing capabilities that can be used in today’s grid

• New Partnerships for Transition
 – Engaging Industry and National Lab partners to take TCIP technologies to the next level

• More information: tcip.iti.uiuc.edu; hkhurana@illinois.edu
Questions?

• Contact
 – Himanshu Khurana (hkhurana@illinois.edu)