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Motivation of This Work

3

Current Practice Critical Needs

Urgent need to develop 

scalable, real-time methods 

to monitor and improve 

PMU data quality.

Conventional bad data 

detection algorithms are 

rendered ineffective, novel 

algorithms are needed.

 PMU-based decision 

making tools require 

accurate PMU data for 

reliable analysis.

 PMU data has higher 

sampling rate and 

accuracy requirement.

 Typical PMU bad data 

ratio in California ISO 

ranges from 10% to 17% 

(in 2011) [5].
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Current Work for PMU Bad Data Detection

 PMU-based state estimator [2].

 Kalman-filter-based approach [3].

 Require system parameter and topology information.

 Require converged state estimation results.

 Low-rank matrix factorization for PMU bad data detection [4].

 Pre-defined logics & thresholds for bad data detection [1].

Matrix factorization involves high computational burden.

 Robustness of pre-defined logics under eventful conditions.
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Overview of Proposed Work

Online PMU Bad Data Detection Algorithm

Problem Formulation

 Study spatio-temporal correlations among good / eventful / bad PMU data.

 Formulate bad PMU data as spatio-temporal outliers among other data.

 Apply density-based outlier detection technique to detect bad PMU data.
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Good Data vs Eventful Data vs Bad Data

Phase Angle Measured by A Western System PMU for A Recent Brake Test Event
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Good Data vs Eventful Data vs Bad Data
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Features of Good / Eventful / Bad Data

Criteria: Normal Data 

VS Bad / Eventful Data

 For a particular PMU 

curve, its bad data 

segment and eventful 

data segment have weak 

temporal correlation with 

its normal data segment.

Criteria: Bad Data 

VS Eventful Data

 For a particular PMU curve, its bad data 

segment has weak spatial correlation with 

corresponding data segments of its 

neighboring PMU curves.

 Its eventful data segment has strong 

spatial correlation with corresponding 

data segments of its neighboring PMU 

curves.

PMU Bad Data: 

Spatio-Temporal 

Outlier
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Online Detection of Bad PMU Data

Spatio-Temporal Correlation 

Metrics (Distance Function)

 For high-variance bad data:

 For low-variance bad data:

Density-Based 

Local Outlier Detection

 Local Outlier Factor:

 Local Reachability Density:

 Bad Data Detection:

 LOF(p) >> 1: p contains bad data.

 LOF(p) ≈ 1: p contains good data only.

 Low-variance bad data: 

un-updated data, etc.

 High-variance bad data: data 

spikes, data loss, high noise, 

false data injections, etc.
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Online Detection of Bad PMU Data
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Numerical Results – Data Spikes

Test Case Description

• 22 real-world PMU real power data curves.

• PMU No. 10, 13, 16, 21 contain data spikes 

lasting from 1.05s to 1.1s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0197s.
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Numerical Results – Un-updated Data

Test Case Description

• 13 real-world PMU current magnitude data 

curves.

• PMU No. 1, 5, 7, 13 contain un-updated data 

lasting from 1s to 1.2s.

• Line tripping fault is presented around 4s.

Numerical Results Description

• All the 4 bad data segments are detected.

• System event does not cause false alarms.

• Detection delay is less than 0.18s.

• Computation time for each data window is 

0.0115s.
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Conclusions

Conclusions

An approach for PMU bad data detection is proposed:

 It is purely data-driven, without involving any knowledge on network 

parameters or topology, which avoids the impact of incorrect 

parameter/topology information on the identification results.

 It encounters no convergence issues and has fast computation 

performance, which is desirable for online application.

 It is suitable for identifying bad data in PMU outputs under both normal 

and eventful operating conditions.
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