

International Synchrophasor Symposium March 22-24, 2016

Atlanta, Georgia USA

Engineering Analysis Task Team 23 March 2016 15:00-18:00

Novel methods to assess secure power transfer capabilities

Emil Hillberg

Emil Hillberg PhD Senior Specialist Manager Power System Network Studies

Main fields of research:

Power system dynamics, stability, security and reliability Power system network planning and operation Blackout mitigation, Smart transmission grid solutions, SIPS, WAMS

Relevant ongoing activities:

Aggregated load models for the Nordic TSOs power system planning model CloudGrid - Transnational Smart Grid Lab R&D project funded by ERA-Net Smart grid +

Professional background:

Since 2012: STRI, Manager and senior specialist network studies, Göteborg Sweden 2007-2012: SINTEF Energy, Research scientist power system dynamics, Trondheim Norway 2004-2007: ABB Switzerland, Harmonic filter specialist, Baden Switzerland 2002-2003: ABB Power Systems, HVDC engineer, Ludvika Sweden

Your independent partner

- for high voltage technology and applications

Lab: Accredited high voltage laboratory Consulting: Leading-edge competence for directly applicable solutions

Outline

- Introduction
- Novel indicators of secure transfer
 - kmin indicator
 - N-k secure operating region
- Novel methods to assess secure transfer
 - EAC of PTC concept
- Summary

Introduction

Why need for novel assessment methods of secure power transfer?

- Large disturbances Extraordinary events – High Impact Low Probability
- High impact on society:
 - SE 2003: 2 billion SEK
 - US 2003: 10 billion USD
- Difficult to predict extent and frequency - many uncertainties
- Difficult to prevent the unpredictable

Introduction

Generic sequence of Large disturbances

- 1. Trigger: failure with unforeseen impact. Actions needed to prevent deterioration.
- 2. Depending on limiting factors, the next phase is:
 - Thermal overloading. Actions required to prevent instability.
 - ii. Instability. Actions imperative to regain control.
- 3. Instability initiated cascade. Very fast. Widespread impact. Automatic actions may limit the extent.
- 4. Restorative state. Unsynchronised islands. Blackout. Restoration needed to regain normal operation.

k_{min} indicator

Quantifying risk of large disturbances using critical contingency level:

with *i*: the set of contingencies that lead to an unstable state *s*: the contingency level of each *i*

 \mathbf{k}_{\min} indicator

Utilisation in power system operation:

Novel indicators of secure transfer k_{min} indicator

Case study of historical events:

- Blackout in Sweden and Denmark 23 September 2003
 - Independent faults, k_{min}≤3
- Blackout of Italy 28 September 2003
 - Thermal overload, k_{min}≤2
- Disturbance in Europe 4 November 2006
 - Manual operation, *k_{min}*≤3
- Blackout in Brazil 10 November 2009
 - Extreme weather, k_{min}≤3

N-k secure operating region

Assessment and visualisation of a secure operating domain

I: Secure operating area and actual operating point

N-k secure operating region

Assessment and visualisation of a secure operating domain

I: Secure operating area and actual operating point

II: N-k security

N-k secure operating region

Assessment and visualisation of a secure operating domain

I: Secure operating area and actual operating point

II: N-k security

III: Security enhancement by automatic actions

EAC on PTC concept

- Development of the EAC on PTC concept
 - Based on the Equal-Area Criterion (EAC)
 - Applied on Power Transfer Corridors (PTC)
 - Utilising power flow and angle over the PTC (assuming PMU installations)
- Development of SIPS design procedure using the EAC on PTC concept
 - Proof of concept based on case study of the IEEE RTS
 - Identification of complexities regarding the assessment of mechanical power

EAC on PTC concept

Equal-Area Criterion Cluster of critical machines

Novel methods to assess secure transfer **EAC on PTC concept** Cluster of critical machines within one sub-system PTC P- δ characteristics [MW] Ρ P_{M} 600 Tie-line 1 PTC Tie-line m 500 -400 300 δ_{SIPS} 30 90 0 60 δ [°]

EAC on PTC concept

SIPS design using the EAC on PTC concept

Critical contingency without SIPS

Novel methods to assess secure transfer EAC on PTC concept

SIPS design using the EAC on PTC concept

Identification of SIPS action time and angle

Novel methods to assess secure transfer EAC on PTC concept

SIPS design using the EAC on PTC concept

Identification of SIPS impact requirements

EAC on PTC concept

SIPS design using the EAC on PTC concept

EAC on PTC concept

SIPS design using the EAC on PTC concept

EAC on PTC concept

Complexity of the P_M assumption

Assumption 1: Constant P_M

EAC on PTC concept

Complexity of the P_M assumption

EAC on PTC concept

Complexity of the P_M assumption

EAC on PTC concept

Complexity of the P_M assumption

EAC on PTC concept

Complexity of the P_M assumption

Assumption 3: Scalable from measured P_M

Summary

This work has provided new insights into and perceptions of the behaviour and characteristics of extraordinary events

- Novel solutions for prediction of large disturbances include development of
 - k_{min} vulnerability indicator and
 - N k secure operating region.

Novel methods for assessment of secure power transfer capability to prevent large disurbances

• The EAC on PTC concept.

Summary

This work propose conceptual solutions for decreasing risk of extraordinary events.

- Development of tools and techniques is needed for these solutions to support operation of the power system, e.g.:
- Tools for online multi-level dynamic contingency analyses
- Solutions to limit the no. of simulations to identify critical contingencies.
- Novel operating criteria, considering risk of extraordinary events?

Further reading

Doctoral theses at NTNU, 2016:10

Emil Hillberg

Perception, Prediction and Prevention of Extraordinary Events in the Power System

Available at:

http://hdl.handle.net/11250/2375233

D NTNU Norwegian University of Science and Technology

Faculty of Infor Mathematics and Ele Department of Electric

Doctoral theses at NTNU, 2016:10

Emil Hillberg

STRI

Emil Hillberg PhD Senior Specialist Manager Power System Network Studies

STRI AB Regnbågsgatan 8 B / 417 55 Göteborg / Sweden Phone: +46 240 795 75 Cell: +46 725 64 95 75 emil.hillberg@stri.se www.stri.se

