North American Synchro Phasor Initiative **SIEMENS** Working Group Meeting Fort Worth, Dallas, Texas, Feb. 23-24, 2011

SiGuard® System Security Solutions

Dynamic Network and Protection Security of Transmission Systems

E. Lerch Siemens AG Erlangen, Germany mailto: edwin.lerch@siemens.com

SiGuard® DSA (Dynamic Security Assessment) SiGuard® PSA (Protection Security Assessment)

© Siemens AG 2011. All rights reserve

The Solution:

To Avoid Large Scale Outages To Make Use of all Transfer Capabilities To Define and Verify Countermeasures

All This for the Interacting Primary and Protection System

That is:

© Siemens AG 2009. All rights reserved.

Dynamic Network Security Assessment

SiGuard[®]-DSA

© Siemens AG 2009. All rights reserved.

SiGuard® DSA System Structure Overview

© Siemens AG 2011. All rights reserved

2011-02

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

SIEMENS

DSA Ranking – Security Indices (11 of 20 indices)

- 1. Angle index (AI)
- 2. Maximum frequency deviation index (MFDI)
- 3. Frequency recovery time index (FRTI)
- 4. Dynamic voltage index (DVI)
- 5. Quasi-stationary voltage index (QSVI)
- 6. Power flow index (PFI)
- 7. Load shedding index (LSI)
- 8. Small signal stability index (SSSI)
- 9. Nodal loading index (NLI)
- 10. Approximate collapse power index (ACPI)
- 11. Power transfer stability index (PTSI)

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 11

2011-02

DSA Ranking - Security Indexes

9. Nodal loading index (NLI) - (1)

$$e_i = \frac{V_i}{E_i}$$
: $e_i = \sqrt{\frac{1+2 P_{ii}}{2} \left[1 \pm \sqrt{1-4 \Delta_{ii}}\right]}$

 $\sin\left(\psi_{i}\right) = -Q_{ii} / e_{i}$

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 14 2

2011-02

DSA Ranking – Security Indexes

9. Nodal loading index (NLI) - (2)

Solution exists, when

 $e_{i} \ge 0$ $\frac{|Q_{ii}|}{e_{ii}} \le 1$ and $\Delta_{ii} = \frac{4 * (P_{ii}^{2} + Q_{ii}^{2})}{|(1 + 2 P_{ii})^{2}} \le 1$

existing condition <u>and</u> absolute system loading margins for each node

 P_{ii}, Q_{ii} nodal loading in pu

$$NLI = \left\{ 1, \max_{i=1,\dots,N} \left(\Delta_{ii} \right) \right\}$$

2011-02

DSA Ranking – 3-stages Fuzzy Logic System (FLS)

SIEMENS

with additional PMU data and trend analysis

DSA Ranking – Security Indices – DSA Test network

~ {	540	buses
~ `	1.750	branches
~ `	120	machines

- ~ 250 controller
- ~ 2,5x faster than real-time

© Siemens AG 2011. All rights reserved. NASPI 2011

DSA Ranking – Security Indexes

comparison of ACPI and PTSI (nodal load increase)

Necessity and General Functioning of Distance Protection Control Systems

3-phase fault at node SS-6

Parallel line L_00255 / L_00256 is equipped with Distance Protection Functions

Zone	Zone 1	Zone 2	Zone 3
Reach	85%	120%	150%
Time	0.062 s	0.3 s	0.6 s

Power oscillation and system separation after trip of one line - loss of second line (Power Swing Blocking not active)

G 00047 180 X [Ohm] 350 THETA [°] South 1.25 5.00 [s] -180180G 00048 THETA [°] 1.25 5.00 [s] South -350 350 -180R [Ohm] Zone G 00150 180 THETA [°] 1.25 2.503.75 5.00 [s] Center -180DIST-1 without PSB 350 Unintentional Trip of Relay DIST-1 in Zone 2 APOL PSB Sub-network "South" is separated from the grid 3.75 5.00 [s] 1.25 2.50Loss of equilibrium between generation and load (\rightarrow drop of frequency)

Relay DIST-1 on the healthy Line without Power swing Blocking

NASPI 2011

SIEMENS

Oscillation of the south system – no system separation **SIEMENS** (Power Swing Blocking active)

© Siemens AG 2011. All rights reserved. NASPI 2011

SiGuard[®] DSA Assessment of the Dynamic Security **SIEMENS** Taking "Fingerprints" of the Dynamic System Behavior

© Siemens AG 2011. All rights reserved.

SiGuard[®] DSA Assessment of the Dynamic Security Contingencies and Proposed Countermeasures

© Siemens AG 2011. All rights reserved.

Page 25

2011-02

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

SIEMENS

SiGuard[®]-DSA Remote Computation on PC Cluster

SIEMENS

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

Protection Security Assessment

SiGuard®-PSA

© Siemens AG 2009. All rights reserved.

How to maintain Network Security?

NERC (North American Electric Reliability Council):

Protective relays are involved in ≈ 75% of major network disturbances

No Network Security without Protection Security!

© Siemens AG 2011. All rights reserved

How to do Protection Security Assessment?

© Siemens AG 2011. All rights reserved

Evaluation of Simulation Results

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 31

SiGuard[®]-PSA Assessment of the Protection Security **SIEMENS** Fingerprint of the Protection System

Conclusion

- Several methods to observe the security of a system have been built and combined
- Fast margin calculation shows the state and trend of nodal and system loading
- Ranking of system loading, frequency, voltage, performance and stability allow a detailed view on the security state of a system after critical contingencies
- The combination of trend analysis and state analysis helps the operator to increase the security of his system
- Additional PMU-information's can be used to have an actual view on the system state

Thank you for your attention!

Edwin Lerch emens AG SE PTI NC one: 0049 9131 7-34052 vin.lerch@siemens.com

© Siemens AG 2011. All rights reserved.

DSA Ranking – Security Indexes

1. Angle index (AI)

$$AI = \min\left\{1, \max_{i=1...NG}\left(\frac{\delta_{ci,\max}}{\delta_{c,\max,adm}}\right)\right\}$$

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 36

DSA Ranking – Security Indexes

2. Maximum frequency deviation index (MFDI)

$$\mathbf{MFDI} = \min\left\{1, \max_{i=1...NG}\left(\frac{\left|\Delta f_{i,\max}\right|}{\left|\Delta f_{\max,adm}\right|}\right)\right\}$$

Page 37

NASPI 2011

DSA Ranking – Security Indexes

3. Frequency recovery time index (FRTI)

Page 38

2011-02

DSA Ranking – Security Indexes

5. Quasi-stationary voltage index (QSVI)

$$QSVI = \min\left\{1, \max_{i=1...N} \left(\frac{\left|\Delta V_{pi}\right|}{\left|\Delta V_{i,\maxadm}\right|}\right)\right\}$$

Where $\Delta V_{DVi} = V_{ni} - V_i$

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 39

2011-02

DSA Ranking – Security Indexes

6. Power flow index (PFI)

$$PFI = \min\left\{1, \max_{i=1...NL} \left(\left[\frac{P_{pi}}{P_{i,\lim}}\right]^n\right)\right\}$$

DSA Ranking – Security Indexes

7. Load shedding index (LSI)

$$\mathrm{LSI} = \frac{P_{Shed}}{P_{total}}$$

Page 41

Dr. E. Lerch, E D SE PTI NC

© Siemens AG 2011. All rights reserved. NASPI 2011

DSA Ranking – Security Indexes

10. Approximate collapse power index (ACPI)

Approximation of the PV-curve

$$\left(V_{i}=f\left(\lambda_{i}\right)\right)$$

 $P_{i} = P_{io} (1 + d_{i}\lambda_{i})$ $Q_{i} = Q_{io} (1 + q_{i}\lambda_{i})$

$$\begin{aligned} \lambda_i &= a_i V_i^2 + b_i V_i + c_i \\ ACPI_{\min} &= \left\{ 1, \max_{i=1\dots N} \left[\frac{P_i}{P_{ci}} \right] \right\} \quad \frac{P_i}{P_{ci}} = \frac{1}{1 + d_i \lambda_{ci}} \quad \lambda_{ci} = \lambda_i \text{ for } \frac{d\lambda_i}{dV_i} = o \end{aligned}$$

© Siemens AG 2011. All rights reserved. NASPI 2011

2011-02

DSA Ranking – Security Indexes

11. Power transfer stability index (PTSI)

Approximation of the system as 2 node system (as for NLI) Thevenin equivalent: max. transferred power when $Z_{load} = Z_{Thev}$

$$PTSI = \min\left\{1, \max_{i=1...N}\left(\frac{2 S_{Li} (1 + \cos(\phi_{ii} - \phi_{Li}))}{Y_{ii} E_{i}^{2}}\right)\right\}$$

 S_{Li} load power, Φ_{Li} angle of load admittance

DSA Ranking – Security Indexes - Example

Without AVR Fault case: 3-phase busbar fault at node SRT 00 ---->> Normal loading /Without AVR AIII = 1.00 -----> FRTI = 1.00 --> --> FFII = 1.00 ---> FSII =1.00 --> MFDI = 1.00 -->DVII = 1.00 --: -> FVII = 1.00 ---> --> FDSI = 1.00 QSVI = 1.00 --> PFII = 1.00 --> --> FPII = 1.00 -----LSII = 0.00 -->

With AVR

© Siemens AG 2011. All rights reserved.

Page 44

Dr. E. Lerch, E D SE PTI NC

Safety

Alert:low

Alert:high

Danger

Parallel Computing – Software Structure

© Siemens AG 2011. All rights reserved.

Base for the Dynamic Contingency Calculation PSS®NETOMAC – Modules

ection notice / Copyright notice

SIEMENS

© Siemens AG 2011. All rights reserved

P=-54.6 0=-19.1

2011-02

Bust: U-L1 RM

lka"=0.23

Dr. E. Lerch, E D SE PTI NC

- Bust: U-L1 em

NASPI 2011

PC Real Time

PSS®NETOMAC DSA System Structure Visualization

© Siemens AG 2011. All rights reserved

Simulation results and computation time using one CPU

Grid 1: UCTE		Grid 2: Mediterranean Ri		
610	Generator	712	Generator	
4.400	Nodes	7.600	Nodes	
21.000	Branches	31.200	Branches	
1.050	Controller	1.300	Controller	

© Siemens AG 2011. All rights reserved.

Page 48

Protection Security Assessment – PSA (1)

- Actual switching and load state
- Data base of installed relays, relay functions, characteristic and settings
- Stepped event simulation (at busbars and along lines)
- Check of relay pick ups and selectivity
- Check of fault clearing time
- Breaker failure and relay failure are simulated and analysed
- Results displayed in tabular and graphical form

Page 49

Protection Security Assessment – PSA (2)

© Siemens AG 2011. All rights reserved.

Page 50 2011-02

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

Morocco Project (FAT February / March 2009)

© Siemens AG 2011. All rights reserved.

Page 51

DSA System Structure Implementation in the SINAUT Spectrum System

© Siemens AG 2011. All rights reserved

Page 52

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

SIEMENS

DSA System Structure Principle Data Flow DSA - NA

SIEMENS

© Siemens AG 2011. All rights reserved. NASPI 2011

Page 53

Morocco Project 15-minutes cyclic cuts from EMS

🗳 081127_0015_RealTime.raw 🖾 081127_0030_RealTime.raw 🗳 081127_0045_RealTime.raw 🗳 081127_0100_RealTime.raw 🖸 081127_0115_RealTime.raw 🗳 081127_0130_RealTime.raw 🗳 081127_0145_RealTime.raw 🗳 081127_0200_RealTime.raw 🖾 081127_0215_RealTime.raw 🖾 081127_0230_RealTime.raw 🗳 081127_0245_RealTime.raw 🖬 081127_0300_RealTime.raw 🗳 081127_0315_RealTime.raw 🖸 081127_0330_RealTime.raw 🗳 081127_0345_RealTime.raw 🗳 081127_0400_RealTime.raw 🖾 081127_0415_RealTime.raw 🗳 081127_0430_RealTime.raw 🖸 081127_0445_RealTime.raw 🗳 081127_0500_RealTime.raw 🖸 081127_0515_RealTime.raw 🗳 081127_0530_RealTime.raw 🖸 081127_0545_RealTime.raw 3 081127 0600 RealTime.raw

27 11 2008 01:15	0, 100.0					
27.11.2000 01.10	27.11.08 03:00:0	Results of	SE Start:	cycli	C 00	
27.11.2008 01:30	PSS/E version 30	P/Q_load:	1701.80 MW	367.9	41 Mvar	
27.11.2008 01:45	1,'IMF60S '	,60.0000,1,	0,	0, 1, 1	1,1.0648,-9	5.2773,1
27 11 2008 02:00	2,'Hans25S1 '	,225.000,1,	0,	0, 1, 1	1,1.0230,-	18.975,1
27.11.2000 02.00	3, E10u25S1	,225.000,1,	0,	0, 1,	1,1.0455,-	11.429,1
27.11.2008 02:15	4, E106011	,60.0000,1,	U,	U, 1,	1,1.0995,-	13.347,1
27.11.2008 02:30	5, EIUVS_11	,00.0000,1,	U, 0	0, 1,	1,1.0982,	13.495,1
27 11 2008 02 5	0, E10V3_12 7 'Eoc6091 '	,00.0000,1,	U, 0	υ, ι, ο - 1 -	1,1.1002,- 1 1 0011	10.440,1
27.11.2000 02 43	8 'SKHIRAOS1 '	,00.0000,1, 60 0000 1	0, 0	υ, ι, 0 1 ·	1,1.0011,- 1 1 0507 -*	15.070,1 14.384 1
27.11.2009 03:00	9 'SEH25S '	.225.000.1.	0, 0.	0, 1, 0, 1, 1	1.1.04221	10.967.1
27.11 2008 03:15	10.'SEH25I	.225.000.1.	Ő.	0. 1.	1.1.0422	10.967.1
27 11 2008 03:30	11,'SEH60S '	,60.0000,1,	0,	0, 1,	1,1.0424,-	11.547,1
27.11.2000 00.00	12,'SEHUST1 '	,60.0000,1,	0,	0, 1,	1,1.0424,-	11.593,1
27.11.2008 03:45	13,'0_H25S1 '	,225.000,1,	0,	0, 1, 1	1,1.0257,-9	9.5718,1
27.11.2008 04:00	14,'jb NOUACEUR '	,60.0000,2,	0,	0, 1, 4	4,1.1021,-	13.077,1
27.11.2008 04:15	15, CIM25123 16 CTM2591	,225.000,1,	υ, Ω	ט, ו, י וא ו	1,1.0390,- 1 1 0390 -	11.153,1 11 153 1
27.11.2008.04:30	10, 0112501	,225.000,1,	•,	o, ı,	1,110070,	
27.11.2009.04.45	СТГ					
27.11.2000.04:45	DIS				-	
27.11.2008 05:00		Con	versions from	n PSS	S®E	
27.11.2008 05:15		1	to PSS®NETC	DAM		
27.11.2008.05:30						
07.11.0000.05.45		[N]279	[LaW25S1 225.00]		0.9661	-16.773
27.11.2008 05:45	_ 🗳 081127_0000_REALTIM	E.net [N]283	[SiO25S1 225.00]		1.0111	-17.174
27.11.2008 06:00	081127_1200_REALTIM	E.net [N]287	[TIT25S1 225.00]		1.0127	-17.245
27.11.2008 06:15	081127 2000 REALTIME	E.net [N]294	[SiBo25S1 225.00]		1.0404	-16.633
27 11 2008 06:30		[N]164	[LaaLy251 225.00]		1.0176	-17.680
27.11.2000.00.30		[N]163	[LaaLy25S 225.00]		1.0180	-17.549
27.11.2008 06:45	U81128_1200_REALTIME	E.net [N]162	[LSahVSS_ 225.00	ŋ	1.0217	-45.254
27.11.2008 07:00	081128_1600_REALTIM	E.net [N]3 [E	Ou25S1 225.00]	-	1.0345	-17.712

© Siemens AG 2011. All rights reserved.

Page 54

Dr. E. Lerch, E D SE PTI NC

NASPI 2011

Scenario Configuration

Network configuration Protection configuration Fault conditions type of protection Type of fault (1p, 3p) Infeed condition back-up protection Fault impedance DG conditions ٠ protection failure Fault location Number of faults 🚺 GUL analysis Define Analysis NET. Database Name Infeed Police Da testinat 33.80 CONFIRM AND SAVE TO DATABASE NET_ID Non Voltage (kV) 20 Filepath on Server NETVAR_D Staffelzet 0.249 E laim! Resultoeth on Client Load init Data Calc Init Data E ISM Results' **DB-Fienane** SM-Variations testnetz in the section Sun. Gernerator Protection Devices Transfer-Filename transferfie txt paincied. selected GENERATE TRANSFERFILE no selec Simula Fault Place Fault Type Resistance (Ohm) Select 1 pol & 3... . running Factors zone (min) "Running fault method" Number of Packages: SM-VARIATIONS 0

Siemens AG 2011. All rights reserved.

Evaluation of Simulation Results

Page 56

Dr. E. Lerch, E D SE PTI NC

NASPI 2011