

Software for Phasor Technology: Cell Topology

NAPSI Meeting, Chattanooga 10/8/09

Michael Shulim, CEO

ReLab Software, LLC

Agenda

- Software for Phasor Technology
 - Need
 - Solution
- ReLab's Products
 - IEEE C37.118 OPC Drivers
 - Software Logic Controller
 - ClearView SCADA
 - OPC Server
- Implementations
 - Boulder CO partial
 - Guatemala Full

Software for Phasor Technology

Need

- Fast, efficient, interoperable, expandable and inexpensive implementation of Synchrophasors for automated grid control
- Upgrading of existing control systems to take advantage of Synchrophasors rather than replacing the control system
- Low cost-of-ownership with fast returnon-investment

Solution

- Software that collects information from PMU at fast data rates, is reliable, is interoperable and is simple to implement
- Software that is easily integrated into an existing control system
- Simple implementation
- Ability to work with other systems such as fault monitors, MRP, EMS

Complete Software Synchrophasor Solutions

Functionality of Synchrophasor Solution

Phasor Communication

- Industry accepted OPC Interface
- Full compliance with IEEE C37.118
 standard
- High performance & reliability
- Scalable solution
- Flexible (interface to SCADA & IED)

RLSYNC and/or RLSYNCPDC with RLSLC provides fully functional software only Phasor Network Implementation

Synchrophasor Data Management

- Situation Awareness
- Supervisory Control
- Alarm/Data Monitoring
- Analysis and Prediction

Phasor Data Analysis

- Oscillography
- Historical data trending
- Phasor Display Chart
- Alarm Displays

PMU Visualization Examples

Data Monitoring

One Line

Data Visualization

Phasor Display Chart

Real-Time & Historical Trending

Implementation: Boulder Co

- Client: Accenture and Xcel Energy
- Objective: Accenture to develop an analytics engine inside the substation fence that would collect data, process it and in some cases send it centrally to further support other capabilities
- Requirements
 - Fast data transmission with time stamp from the PMU
 - Interoperable software components that are easy to implement
- Components
 - Synchrophasors placed on the distribution feeder
 - ReLab's C37.118 OPC Server and Driver
 - Customized Analytics Module (built by Accenture)
- ReLab's Contribution
 - RLSYNC was an "out of the box" solution to pull data from PMUs in the field to the Analytics Module
 - ReLab's service was a key component in configuring the PMUs and bring them up with the communication quickly
- Benefits of Analytics Module using C37.118
 - Analysis of Substation and Feeder Sensors
 - Calculating fault information (classification, severity, location, etc.)
 - Improved Grid Operation
 - Increased Asset Life
 - Decreased O&M
- Status:
 - Project complete, Analytics module up and running
 - System is configured and ready for implementation of phasor as an element of the control scheme

Accenture:

Advanced Analytics Module

Implementation: Guatemala

- Objective: Implement a country wide Synchrophasor network that is compatible with existing SCADA system and does not require additional hardware other than PMU
- Requirements
 - Fast data transmission with time stamp from the PMU
 - Interoperable software components that are easy to implement
 - Complete solution from single vendor with lowest cost and fastest implementation
- Components
 - ClearView Server and Client
 - RLSYNC
 - RLSLC
- ReLab's Contribution
 - Software to for PMU Network
 - Software for data analysis and visualization
 - SCADA System for PMU Network
 - Support for software configuration
- Benefits of Analytics Module using C37.118
 - Analysis of Substation and Feeder Sensors
 - Calculating fault information (classification, severity, location, etc.)
 - Improved Grid Operation
 - Increased Asset Life
 - Decreased O&M
- Status:
 - Project is in initial phase with software implementation to start in 2010
 - Software has been purchased and is getting configured.

Software Platform

Summary

- Phasor have become a necessary element for system protection, repair and Smart Grid Implementation
- A simple, straight forward and low cost method of implementation is required to gain full benefit of these devices
 - Collection of data at rates near 60 frame/second
 - No special communication or conversion hardware
 - Access to the information by other systems such as Fault Identification, Analytic Models, IED
- The Cell Model address the needs of the market to implement Phasor to their full capability
 - Easy to implement
 - Meets standard
 - Only computers and software required
 - Scaleable
 - Interoperable
 - Low cost-of-ownership with fast return-on-investment