Software for Phasor Technology: Cell Topology

NAPSI Meeting, Chattanooga 10/8/09
Michael Shulim, CEO
ReLab Software, LLC
Agenda

• **Software for Phasor Technology**
 – Need
 – Solution

• **ReLab’s Products**
 – IEEE C37.118 OPC Drivers
 – Software Logic Controller
 – ClearView SCADA
 – OPC Server

• **Implementations**
 – Boulder CO – partial
 – Guatemala - Full
Software for Phasor Technology

• **Need**
 – Fast, efficient, interoperable, expandable and inexpensive implementation of Synchrophasors for automated grid control
 – Upgrading of existing control systems to take advantage of Synchrophasors rather than replacing the control system
 – Low cost-of-ownership with fast return-on-investment

• **Solution**
 – Software that collects information from PMU at fast data rates, is reliable, is interoperable and is simple to implement
 – Software that is easily integrated into an existing control system
 – Simple implementation
 – Ability to work with other systems such as fault monitors, MRP, EMS
Software for Phasor Technology

2.1 System Topology

From other Level 1 Cells

To Level 3 Cells

Data from up to 64 x 64 PMUs can be collected at this level

Copyright © ReLab Software LLC
Complete Software Synchrophasor Solutions

Synchrophasor System Software Topology

Synchrophasor WAM Solution
Functionality of Synchrophasor Solution

- **Phasor Communication**
 - Industry accepted OPC Interface
 - Full compliance with IEEE C37.118 standard
 - High performance & reliability
 - Scalable solution
 - Flexible (interface to SCADA & IED)

RLSYNC and/or RLSYNCPDC with RLSLC provides fully functional software only Phasor Network Implementation

- **Synchrophasor Data Management**
 - Situation Awareness
 - Supervisory Control
 - Alarm/Data Monitoring
 - Analysis and Prediction

- **Phasor Data Analysis**
 - Oscillography
 - Historical data trending
 - Phasor Display Chart
 - Alarm Displays
PMU Visualization Examples

Data Monitoring

ReLab Software, LLC -- Confidential Information
Data Visualization

Phasor Display Chart

Real-Time & Historical Trending
Implementation: Boulder Co

- **Client:** Accenture and Xcel Energy
- **Objective:** Accenture to develop an analytics engine inside the substation fence that would collect data, process it and in some cases send it centrally to further support other capabilities
- **Requirements**
 - Fast data transmission with time stamp from the PMU
 - Interoperable software components that are easy to implement
- **Components**
 - Synchrophasors placed on the distribution feeder
 - ReLab’s C37.118 OPC Server and Driver
 - Customized Analytics Module (built by Accenture)
- **ReLab’s Contribution**
 - RLSYNC was an “out of the box” solution to pull data from PMUs in the field to the Analytics Module
 - ReLab’s service was a key component in configuring the PMUs and bring them up with the communication quickly
- **Benefits of Analytics Module using C37.118**
 - Analysis of Substation and Feeder Sensors
 - Calculating fault information (classification, severity, location, etc.)
 - Improved Grid Operation
 - Increased Asset Life
 - Decreased O&M
- **Status:**
 - Project complete, Analytics module up and running
 - System is configured and ready for implementation of phasor as an element of the control scheme
Implementation: Guatemala

- **Objective:** Implement a country wide Synchrophasor network that is compatible with existing SCADA system and does not require additional hardware other than PMU

- **Requirements**
 - Fast data transmission with time stamp from the PMU
 - Interoperable software components that are easy to implement
 - Complete solution from single vendor with lowest cost and fastest implementation

- **Components**
 - ClearView Server and Client
 - RLSYNC
 - RLSLC

- **ReLab’s Contribution**
 - Software to for PMU Network
 - Software for data analysis and visualization
 - SCADA System for PMU Network
 - Support for software configuration

- **Benefits of Analytics Module using C37.118**
 - Analysis of Substation and Feeder Sensors
 - Calculating fault information (classification, severity, location, etc.)
 - Improved Grid Operation
 - Increased Asset Life
 - Decreased O&M

- **Status:**
 - Project is in initial phase with software implementation to start in 2010
 - Software has been purchased and is getting configured.
Software Platform

SCADA
- ClearView SCADA
- Monitoring
- Decision
- Control
- Data Logging
- Reporting

Logic & Integration
- Software Logic Controller
- MODBUS Server
- SDKs and Tools

User Interface
- ClearView Client
- OPC, RLSLC Console

Communication
- OPC Server
- SEL-OPC
- MODBUS
- IEC 61850
- RLSYNC
- Serial-TCP/IP Converter
- Serial, TCP/IP Virtual Ports

IED’s, PLC’s, DCS’s, Smart Sensors and …..

Legend:
- GUI
- Servers
- Interfaces
- Drivers

ReLab Software, LLC -- Confidential Information
Summary

• Phasor have become a necessary element for system protection, repair and Smart Grid Implementation

• A simple, straight forward and low cost method of implementation is required to gain full benefit of these devices
 – Collection of data at rates near 60 frame/second
 – No special communication or conversion hardware
 – Access to the information by other systems such as Fault Identification, Analytic Models, IED

• The Cell Model address the needs of the market to implement Phasor to their full capability
 – Easy to implement
 • Meets standard
 • Only computers and software required
 – Scaleable
 – Interoperable
 – Low cost-of-ownership with fast return-on-investment