

Synchrophasor-Based Monitoring, Analysis, and Control

Roy Moxley Schweitzer Engineering Laboratories, Inc.

Making Electric Power Safer, More Reliable, and More Economical®

Copyright © SEL 2008

The Power System Is Changing

Photo Courtesy of Shawn Jacobs, OG&E

SEL Synchrophasor Vision

Protection AND Synchrophasors

Synchrophasors do not hurt relay performance

Relaying Has No Impact on PMCU Function

Synchrophasor data check

Relays Are Right for Synchrophasors

- Phasor measurement and control unit (PMCU) ≥ PMU
- Minimal incremental cost
- Reduced current and voltage connections
- High-accuracy measurements
- High reliability and availability
- Future control applications
- Relays are everywhere

SEL Synchrophasor Equipped Devices Worldwide !

Europe/Asia

>3,000 units

Asia

Pacific

>5,000 units

South America >2,000 units

North America

>20,000 units

Africa/Middle East >1,000 units

Application Options – Not "One Size Fits All"

Protection and Control Time Frame

METER PM 13:22

&	👌 421 Synchrophasor - HyperTerminal										
<u>F</u> ile	e <u>E</u> dit <u>V</u> iew <u>C</u>	ын Г	Tranafa	r Hala							
E	12 23	4	421 S	Synchrophaso	r 2 - HyperTe	erminal					<u> </u>
Ē	>>met pm 13:	F	jile <u>E</u> r	dit <u>V</u> iew <u>C</u> al	l <u>T</u> ransfer <u>I</u>	<u>H</u> elp					
=	ynchronized >>		🗅 🗡	7 2 3		1					
R	elay 1 FL-421 Pullm	Π	=>>m	et pm 13:22	2						
Ĩ		H	Sync	hronized Pl	hasor Meas	urement Da	ta Will be	Displayed a	t 13:22:0	0.000	
Т	ime Quality		=>>								
s	ynchrophasor			_			_				
		H	Rela	y 2			Da	te: 09/28/2	006 Time	2: 13:22:00.00	
M	AG (KV)		SEL-	421 Moscow			5e	rial Number	: 2003105)165	
A	NG (DEG)		Tima	Ouelitu	Mavimum t	ime eunchr	onization e	rror: O	000 (ma)	TSOV = 1	
			11100	Quality	naximum t	пше зупент	UNIZACION E		000 (ma)	1506 - 1	
М	1G (1)		Sync	hrophasors							
A	NG (DEG)		-	-	Pha	se Voltage	3	Pos. Seq	uence Vol	tage	
Con	nected 0:04:54	H			VA	VB	VC		V1		
	Neclea 0.04.34	H	MAG	(kV)	66.975	66.986	66.979		66.980		
			ANG	(DEG)	-55.678	-175.508	64.719	-	55.489		
		Ш			IW	Phase Curr	ents	IW Pos.	Sequence	Current	
		Ш			IA	IB	IC		I1W		
		Ш	MAG	(A)	2004.431	1997.885	1993.773	19	98.681		
			ANG	(DEG)	117.671	-1.792	-121.951	1	17.976		
				10.00.00		F 7000.0 M	• [000001		. Caratura	Drint a sha	
		JC(onnecte	ed 0:02:22	Auto detect	57600 8-N	-I JSCRULL	JCAPS JNUN	A JCapture	JPrintecho	lh

Monitor a Gen Drop Test (New Zealand)

Test Shows System Remains Stable When 400 MW Dropped

Timestamp 5/3/2007 3:10:18.6805/3/2007 3:11:06.6805/3/2007 3:11:54.6805/3/2007 3:12:42.6805/3/2007 3:13:30.6805/3/2007 3:14:18.6805/3/2007 3:15:06.680

Frequencies 18:36:04

"The MRI of Power Systems"

NERC press release on Florida outage Feb. 26, 2008:

Synchrophasors are "Like the MRI of bulk power systems"

Synchrophasor-Based Control – Now a Reality

Big Creek Controls Rector Static VAR Compensator

SCE Uses C37.118 From Relays and PMU

(Harris 5000/6000, IEC 60870-103, Modbus, SEL Fast Message, SES 92, Telegyr 8979, Conitel 2020, GETAC, Recon 1.1, CoDeSys, OPC, ...)

Impact of the Rector SVC: 6-14-07 (pre-SVC) vs. 8-30-07 (post-SVC)

Magunden Substation Voltage Comparison (Rector Substation Events 6-14-07 and 8-30-07)

NOTE: Voltages shown were measured ~70 miles south of Rector Substation (actual low voltage event was of greater magnitude at Rector substation itself)

The Rector SVC had the apparent effect of reducing the magnitude & duration of the fault-induced slow voltage recovery...

Effect of SVC Operation on Big Creek Before -

Effect of SVC Operation on Big Creek After -

Synchronous Vector Processing

System Measurement

Function Calculation

f(x)

Output Designation

Send Control to System (Application)

- Collect synchronous phasor measurements
- Collect logical inputs
- Perform vector and scalar math
- Make decisions
- Produce outputs
- Report data

Select Quantities From Each PMU

Apply Flexible Function Calculations

IEC 61131 engine Math Trig Differentials

Preprogrammed blocks Power Angle difference Modal analysis Station topology check

 $\frac{\partial \theta}{\partial a} \operatorname{MT}(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{D}} \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int_{\mathbb{T}_{n}}^{\mathbb{T}(x)} f(x,\theta) dx = \int$ $\int T(\mathbf{x}) \cdot \frac{\partial}{\partial \theta} f(\mathbf{x}, \theta) d\mathbf{x} = M \left(T(\xi) \cdot \frac{\partial}{\partial \theta} \ln \mathcal{U}(\xi) \right)$ $\int T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta)\right) \cdot f(x,\theta) dx = \int_{R_{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)}\right) f(x,\theta) dx = \int_{R_{n}} \frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)} dx = \int_{R_{n}} \frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)} dx = \int_{R_{n}} \frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)} dx = \int_{R_{n}} \frac{\partial}{\partial \theta} \frac{\partial}{\partial \theta} \frac{f(x,\theta)}{f(x,\theta)} dx = \int_{R_{n}} \frac{f(x,\theta)}{f(x$

Combine Pre-Configured with Custom Functions

Map PMU Quantities to Phase Angle Difference Monitor

	PADM		
EN: BOOL			
ANG_1: REAL		ADIF: REAL	
ANG_2: REAL		AL_1: BOOL	
TH 2: REAL		AL 2: BOOL	
PU_1: TIME		- SOCO' UDINT	
PU_2: TIME			
SOC: UDINT		FUSU. UDINT	
FOS: UDINT			

Improve Local Measurements

Identify and Quarantine Bad Data

	Multiple Measurement Consistency Check			
	Phase A	Phase B	Phase C	
Measurement 1				
Measurement 2			•	
	Kirchoff consistency check			
	Phase A	Phase B	Phase C	-
				12

Sequence Alarm							
Zei	ro Seq	Pos Seq	Neg Seq				
	Unbalance Alarm						
IA	0.00 A	0.00 deg					
IB	0.00 A	0.00 deg					
IC	0.00 A	0.00 deg					
10	0.00 A	0.00 deg					
1	1.00 A	0.00 deg					
12	0.00 A	0.00 deg					

Back to SSTP

Real-Time Modal Analysis Monitor Predicts System Disturbances

Use Oscillation Frequency and Damping Ratio

For the complex Eigen value pair: $\lambda = \sigma \pm j\omega_d$

Oscillation frequency is:

$$v_{\rm osc} = \frac{\omega_{\rm d}}{2\pi}$$

Damping ratio is:

$$\varsigma = -\frac{\sigma_i}{\sqrt{\sigma^2 + \omega_i^2}}$$

Develop Custom Applications

- Voltage Collapse
 Detection
- Instability of Distributed Generation
- Complex Power Swings
- Others ?

Utilities Are Operating Closer to the Edge

Long Island: Monitor Angles Between Transmission Distribution Buses to Detect and Prevent Voltage Collapse

Calculate Voltage Stability Index (VSI)

- SVP calculates maxima: P, Q, and S
- Calculate margins:

 $P_{margin} = P_{max} - P$ $Q_{margin} = Q_{max} - Q$ $S_{margin} = S_{max} - S$

$$VSI = min \left(\frac{P_{margin}}{P_{max}}, \frac{Q_{margin}}{Q_{max}}, \frac{S_{margin}}{S_{max}} \right)$$

Improve Power Swing Detection

Actual Swing from 2003 Blackout

Delta/Delta-Dot Phase Plane Analysis

Delta-Dot Delta-Doubledot Phase Plane

Use Fast Operate Control Blocks for Closed-Loop Control

Synchrophasors Provide New and Improved Capabilities

- Angle measurement
- Disturbance analysis
- Modal analysis
- Out-of-step detection
- Real-time control

What Else Can They Do For You?

Thank You!