REAL TIME IDENTIFICATION OF GENERATOR EXCITATION SYSTEM MODEL & ROTOR ANGLE

H. Ghoudjehbaklou, T. Rahman, S. Sankaran San Diego Gas and Electric (SDG&E) R.A. de Callafon, University of California, San Diego (UCSD) and C. Wells, OSIsoft

NASPI Meeting, Atlanta, GA, March 22-24 2016

A 💦 Sempra Energy utility®

San Diego Gas & Electric (SDG&E)

- Subsidiary of Sempra Energy
- Regulated public utility
- Safe and reliable energy service for 3.4 million consumers
 - 1.4 million electric meters
 - 868,000 natural gas meters
- 4,100 square-mile service territory in San Diego and southern Orange Counties (25 cities)

SDG&E System

- 1,800 miles of electric transmission lines and 21,600 miles of electric distribution lines
- Two compressor stations, 160 miles of natural gas transmission pipelines, 8,100 miles of distribution pipelines and 6,200 miles of service lines
- 4,300 employees

SDG&E PMU Placement

Motivation

Power system stability studies deal primarily with:

- transient in (power) angle and voltage
- transients in frequency

Typical transient effects in AC frequency due to power loss:

Motivation

Generator Start-up

OSIsoft.

SYGMA

Contribution

Study transient effects and model dynamics between measurable signal below in grid tied turbine/generator:

Measurable signals:

- V, I (or real/reactive power P, Q) at high side with frequency
- *V*, *I* (or real/reactive power *P*, *Q*) at low side with frequency
- Field V_f, I_f of generator
- Rotor angle θ or rotor angular speed ω

Outline

- Overview of data (from Combined Cycle Plant)
 - Chief Joe Break Test at 9/17/2015 @ 3:24pm
 - British Columbia Hydrotrip: 07/10/15 @ 4:58pm
- Dynamic models of Turbines Generators
 - GAST
 - GGV01 and simplified CIGRE
- Point of Contact Interconnect Modeling
- Results
- Conclusions

- Disturbance (change in f or P/Q) generated by "grid"
- Measurements of f, V/I and P/Q at high/low side
- In addition to
 Koserev/Yang
 approach:
 - Rotor "phasor" angle θ and rotor frequency ω
 - Field $V_f I_f$

SDG

Sempra Energy utility

Dynamic (differential equations) and non-dynamic (algebraic equations) elements of the network

Dependence of generator unit dynamics on the network voltage magnitude and angle (or frequency)

OSIsoft.

Excitation system model validation

- **1.** Select a disturbance of significant magnitude
- Extract the measured data from PI database Voltage magnitude, frequency, V_field and I_field, and Rotor angle
- 3. Create a reduced Power flow and dynamic model for the machine as seen at Point of Interconnection. Make sure that PSS is modeled
- 4. Playback measured PMU data for voltages and frequencies to the dynamic model
- Compare the measured values of V_field, I_field, and Rotor angles with those from transient stability simulation
- 6. Tune parameters of the dynamic models to get a better match with the measured quantities.

Contribution

Sample PMU measurements of a Generating unit

Instrumentation for rotor angle measurements

Rotor phasor angle via zerocrossing detection

Rotor frequency via timing measurement

Instrumentation for Field (V/I) measurements

Typical Rotor Angle Data

Chief Joe Break Test: 09/17/2015 - 3:00pm - 4:00pm (3:14pm and 3:24pm)

GMA

Comparison of rotor angle and frequency

Chief Joe Break Test: 09/17/2015 (zoom in at 3:24pm)

Final Transient Data: Field V,I and P,Q

Final Transient Data: Field V,I and P,Q

Generator Models

Most simplistic model: GAST (Siemens PTI)

 Still used in WECC and Eastern Interconnection

Features:

- Simple droop control
- Constant Load Limit
- Only three time constants
 - T₁: fuel valve dynamics
 - T₂: turbine dynamics
 - T₃: load response

Significant simplification of turbine dynamics, ignoring temperature control, speed control, etc.

OSIsoft.

NAME	Туре	Description
R	PU	Permanent droop
T1	Seconds	Governor mechanism time constant
T2	Seconds	Turbine power time constant
Т3	Seconds	Turbine exhaust temperature time constant
AT	PU	Ambient temperature load limit
кт	PU	Temperature limiter gain
VMAX	PU	Maximum turbine power
VMIN	PU	Minimum turbine power
DTRUB	PU	Turbine damping factor

Generator Models

More advanced models

 Still "simplified" model Ham et al. "Development and Experience in Digital Turbine Control" IEEE Trans. on Energy Conversion, (1988)

Features:

- Logic for feedback (P/PI/PID)
- 2nd order model for gas turbine dynamics
- Possibility to model power output as function of heat/speed

Similar to GGVO1

CIGRE Technical Brochure 238, Modeling of Gas Turbines and Steam Turbines in Combined-Cycle Power Plants (2003)

NASPI Atlanta March 2016

Results

Results of "fitting" measured rotor frequency

OSIsoft.

Due to simple dynamics between POI PMU frequency and rotor frequency and excellent fit is obtained

Results

Results of "fitting" Ifield and Vfield

Dynamic effects are captured reasonably well

Results of "fitting" positive sequence real P and reactive Q

Dynamic effects are captured, but model needs more features

NASPI Atlanta March 2016

Results

Results of "fitting" Ifield and Vfield

OSIsoft.

Dynamic effects are captured reasonably well

Results of "fitting" positive sequence real P and reactive Q

Dynamic effects are captured, but model needs more features

GMA

Conclusions

- Additional rotor angle/angular speed ω allows characterization of PMU/transformer dynamics
- In single axis system PMU frequency and rotor frequency strongly correlated
- Additional rotor angle can be exploited for better "fitting" of generator dynamics

Questions?

NASPI Atlanta March 2016

