Pre-Commercial Demonstration of Direct Non-iterative State Estimator (DNSE+)

Project with Quanta, NYPA & EPG

Dino Lelic
mlelic@quanta-technology.com

NASPI Work Group Meeting
October 15, 2015
Acknowledgement:

This material is based upon work supported by the Department of Energy under Award Number DE-OE0000704

Disclaimer:

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Project Objective:
Demonstrate functionality and performance of a production-grade Direct Non-iterative State Estimator (DNSE) integrated with NYPA’s Energy Management System (EMS) and with an enhanced Real Time Dynamic Monitoring System (RTDMS) synchrophasor platform from Electric Power Group (EPG);

Background:
• DNSE started as an idea by Bruce Fardanesh at NYPA several years ago; also patented
• It was further researched as PhD thesis by Tony Jiang
• DNSE+ (+ added to designate SE with additional components around the estimation “engine”)

System Architecture – Functional View

Component Diagram of Proposed Project

Legend:
- Phasor Rate
- SCADA rate or slower

Within project scope
Existing component

Who?

Phasors

SCADA/EMS

Model-less Data Conditioning

RTDMS/ISD Platform

RTDMS

ePDC

IEEE C37.118 in Adapter

DNSE+ (Direct Non-Iterating SE) Engine

DNSE Out Adapter

QT/NYPA

SCADA DATA

DNSE+

Who?

SCADA/EMSSCADA/EMS

Phasors

Legend

Phasor Rate
SCADA rate or slower

Within project scope
Existing component

Who?

SCADA INPUTS

PMU INPUTS

Component Diagram of Proposed Project

System Architecture – Functional View

Legend:
- Phasor Rate
- SCADA rate or slower

Within project scope
Existing component
Anticipated Project End Status

- Successfully demonstrate a DNSE+ at New York Power Authority (NYPA) that will:
 - Use both SCADA and synchrophasor data simultaneously to obtain the complete state of the entire NYPA operating model at rates close to the phasor data rates, and without iterations.
 - Have input/output adapters based on standards (IEC 37.118 for streaming synchrophasor data, ICCP for SCADA exchange and CIM models to export the host utility’s EMS source data base)

- Prove that DNSE+ is a commercially viable application by successful integration with commercial products (EMS and RTDMS)
 - RTDMS will be enhanced as part of the project
 - Show DNSE+ is ready for use at other utilities to address a common need for “clean and trustworthy” operational data for synchrophasor applications
Project Participants

Key team members

Executive Sponsor:
Damir Novosel

Quanta DNSE+
Principal Investigator
Dino Lelic

Department of Energy:
Brian Mollohan

EPG Project Team:
Wayne Schmus
Ashley Wang
Prashant Palayam
Simon Mo

Quanta Project Team:
Boza Avramovic
Yi Hu
Tony Jiang
Vasudev Gharpure

NYPA Project Team:
Bruce Fardanesh
Alan Ettlinger
Ali Iravani
Saman Babaee

NYISO – Project Observer & Advisor
Project team Roles

- **Quanta Technology**
 - Overall project management
 - Overall technical lead; overall system design
 - System integration and FAT lead; Site Acceptance Test support

- **NYPA**
 - End user of developed system
 - System design support
 - Field installation & SAT test lead

- **Electric Power Group**
 - EPG product supplier
 - RTDMS enhancement development
 - System integration & FAT support
 - Field installation & SAT support

- **NYISO**
 - Technical advisor and historical PMU data provider
Performance Target

<table>
<thead>
<tr>
<th>Decision point</th>
<th>Performance test environment</th>
<th>Success criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-point of Task 5 (end of 2015)</td>
<td>A mid-range server at QT</td>
<td>Minimum: < 2s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desired: < 1s</td>
</tr>
<tr>
<td>End of Task 6 (July 2016)</td>
<td>NYPA acquired DNSE+ server</td>
<td>Minimum: < 1s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Desired: < 0.1s</td>
</tr>
</tbody>
</table>
Project Tasks & Progress

<table>
<thead>
<tr>
<th>Milestone #</th>
<th>Milestone Name</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Management Planning</td>
<td>Aug 30, 2014</td>
</tr>
<tr>
<td>2</td>
<td>System Design Completion</td>
<td>Jan 30, 2015</td>
</tr>
<tr>
<td>3</td>
<td>DNSE+ implemented*</td>
<td>Jul 30, 2015</td>
</tr>
<tr>
<td>4</td>
<td>RTDMS Platform Enhancement completed**</td>
<td>Jul 30, 2015</td>
</tr>
<tr>
<td>5</td>
<td>Integration and FAT completion</td>
<td>Dec 30, 2015</td>
</tr>
<tr>
<td>6</td>
<td>Field Installation, User training, and SAT completion</td>
<td>Jun 30, 2016</td>
</tr>
<tr>
<td>7</td>
<td>Project completion</td>
<td>Jul 29, 2016</td>
</tr>
</tbody>
</table>

* It has been tested on a small scale system
** Needs to be tested together with DNSE, using data exchange
Current Status of the Project

- Integration of DNSE+ with enhanced RTDMS under way
- Interface for transfer of EMS SCADA data is being developed at NYPA
- PMU data (historical) to be received from NYISO for purpose of testing
Questions