Oscillation Detection and Analysis

David Bertagnolli¹, Jiahui Guo², Yilu Liu^{2,3}

¹ISO New England, Holyoke, MA
²University of Tennessee, Knoxville, TN
³Oak Ridge National Laboratory, Oak Ridge, TN

I. Introduction

- In power systems, changes in load, generation, topology, and control may initiate oscillations that could lead to instability if not well damped.
- Synchrophasor technology makes it possible to detect oscillations.
- Visualization provides operators with an intuitive understanding of what is happening.

II. FNET/GridEye Overview

II. Application Architecture

II. Detection Algorithm

1. Oscillation caused by an incident in EI on 500kV network (03/14/2013 11:15:33 UTC)

Modal Analysis Result

Modes(Hz)		Leroy	Boston
Dominate	Frequency(Hz)	0.6880	0.6983
	Damping Ratio(%)	3.2711	6.2937
Modes(Hz)		RPI	Bangor
Dominate	Frequency(Hz)	0.6910	0.6911
	Damping Ratio(%)	3.9281	3.5285

2. Oscillation case in WECC (06/30/2013 07:35:47 UTC)

3. Oscillation case in EI (04/05/2013 23:31:01 UTC)

4. Oscillation case occurred due to HVDC event (07/03/2013 20:33 UTC)

Sequence	Time(UTC)	Interconnections	Amount (MW)
1	20:35:44	Phase II, pole 1	1775
2	20:37:20	Phase II, pole 2	2775
3	20:38:51	Madawaska	280
4	20:38:51	Eel River	100
5	20:36:05	Outaouais	500
6	20:39:08	Chateauguay	700
7	20:39:13	Highgate	200

Relative phase angle in El

Frequency excursion in Quebec Interconnection

IV. Movie Playback

V. Conclusion

 Visualization of synchrophasors provide insight into power system phenomenon not available through traditional SCADA measuements.

