

Wide-Area Voltage Control of Dynamic Shunt Compensation using Synchrophasors

Presented by: Mathieu Perron, Hydro-Québec Research Institute (IREQ)

Claude Lafond, Hydro-Québec Research Institute (IREQ) Philippe Cadieux, Hydro-Québec Marcel Racine, Hydro-Québec Houssem Akremi, Hydro-Québec

2015 NASPI Work Group Meeting (Chicago, IL)

October 14th, 2015

Presentation Overview

> Hydro-Québec and the IREQ Research Institute

> The GLCC Project

- Context
- Synchrophasor solution
- R&D Pilot project
- Results and conclusion

Hydro-Québec and the IREQ Research Institute

Hydro-Québec Power Grid

> **Production:**

- 43GW Capacity
- 98% Hydro

Transmission:

- 735kV
- Serie compensated
- 34,000km of lines
 - 12 000km 735kV
- 17 asynchronous interconnection

Distribution:

60% of Load in Montreal

Major concerns are power system stability and voltage control.

IREQ – Hydro-Québec Research Institute

<u>Research Areas:</u>

- Smart grid
- Efficient use of electricity
- Renewable energy
- Aging materials and viability
- Battery materials
- > Team of 500 scientists, technicians and engineer
- Annual investment:
 - 100M\$ Innovation project
 - 5M\$ University chairs and contracts
- > 128 Partnership agreement
- > 850 Patents over 40 years

IREQ Power System Simulation Lab

The GLCC Project: Global and Local Control of Dynamic Shunt Compensator using Synchrophasors

Context

> Shunt compensation installation

- 9 Synchronous Condenser (CS)
- 14 Static Compensator (SVC)
- Total capacity of 7000 MVAR capacitive 4000 MVAR inductive

> Main Purposes

- Post-event network stability
- Part of the voltage level control

> Actual Control Strategy

- Same strategy in use since deployment in 1970-80.
- Independent voltage setpoint at each substation.

- > Contribution of compensators is not optimal because of the topology.
- For a voltage collapse situation in the load area, northern substations would not « see » the voltage drop, and extra MVAR wouldn't be generated by SVCs.
- > Need of a synchronized and robust solution to optimize the use of existing compensators.

WACS Solution

Objective

Optimize the use of the actual compensator installation for <u>voltage</u> <u>stability event</u>.

Concept

Synchronized measurement of voltage variation to adjust the compensators setpoint accordingly.

Solution

Control using synchrophasors.

GLOBAL CONTROL

LOCAL CONTROL

- Use of V_{MTL}
- Telecommunication
- PDC & SPDC

- Estimation of V_{MTL}
- Local PMU for V, I
- PMU & SPDC

WACS Solution

Effect on the Montreal voltage level following a severe fault* :

MAJOR GAIN ON POWER FLOW LIMITATIONS

* Simulated 2015 network using PSSE Fault at the La Vérendrye substation, loss of line 7016 and 1 SVC

WACS Solution

Objective

Optimize the use of the actual compensator installation for <u>voltage</u> <u>stability event</u>.

Concept

Synchronized measurement of voltage variation to adjust the compensators setpoint accordingly.

Solution

Control using synchrophasors.

GLOBAL CONTROL

LOCAL CONTROL

- Use of V_{MTL}
- Telecommunication
- PDC & SPDC

- Estimation of V_{MTL}
- Local PMU for V, I
- PMU & SPDC

R&D PILOT PROJECT : LA VÉRENDRYE

1 SVC, 3 Substations and IREQ

R&D Pilot Project

> SVC Control Equipment:

- Multi-Functionnal MBPSS.
- Control the SVC voltage setpoint.

MBPSS

- Power limitation algorithm.
- IREQ Simulink development.
- Partnership with ABB.

> Substation Control Unit (UCP)

- Detection logic algorithm.
- Adjust the MF-MBPSS output with ramp signal.
- IREQ Simulink development.
- Partnership with ABB.

R&D Pilot Project – Challenges

> Multidisciplinary project:

Involving 12 teams and more than 30 people.

> Combine technologies:

 Synchrophasors, telecommunication, substation engineering, SVC control, grid operation, real-time simulation, algorithms and hardware development.

> Real-time test bench:

- Complete replica of the system
- Close-loop real-time tests using **Hypersim**.
- More than **3600** reliability and security tests.

R&D Pilot Project – IREQ Test Bench

Wide-Area Voltage Control System replica on Hypersim, IREQ

R&D Pilot Project – Close loop results

> Hypersim : Voltage drop on 300 buses network

R&D Pilot Project – Close loop results

> Field test: Controlled voltage drop at Chenier

Conclusion

- Successful R&D project leading to full WACS deployment.
- > Voltage profile improved for extreme contingencies.
- > Major gains on power flow limitations.
- > Low-cost and robust solution using synchrophasors.

