Wide-Area Voltage Control of Dynamic Shunt Compensation using Synchrophasors

Presented by:
Mathieu Perron, Hydro-Québec Research Institute (IREQ)
Claude Lafond, Hydro-Québec Research Institute (IREQ)
Philippe Cadieux, Hydro-Québec
Marcel Racine, Hydro-Québec
Houssem Akremi, Hydro-Québec

2015 NASPI Work Group Meeting (Chicago, IL)

October 14th, 2015
Presentation Overview

> Hydro-Québec and the IREQ Research Institute

> The GLCC Project

 • Context
 • Synchrophasor solution
 • R&D Pilot project
 • Results and conclusion
Hydro-Québec and the IREQ Research Institute
Hydro-Québec Power Grid

Production:
- 43GW Capacity
- 98% Hydro

Transmission:
- 735kV
- Serie compensated
- 34,000km of lines
 - 12,000km 735kV
- 17 asynchronous interconnection

Distribution:
- 60% of Load in Montreal

Major concerns are power system stability and voltage control.
IREQ – Hydro-Québec Research Institute

Research Areas:
- Smart grid
- Efficient use of electricity
- Renewable energy
- Aging materials and viability
- Battery materials

Team of 500 scientists, technicians and engineer

Annual investment:
- 100M$ Innovation project
- 5M$ University chairs and contracts

128 Partnership agreement

850 Patents over 40 years
IREQ Power System Simulation Lab

HYPERSIM
Power System Real-Time Simulator

SimPowerSystems™
User’s Guide

MATLAB®
SIMULINK®
The GLCC Project: Global and Local Control of Dynamic Shunt Compensator using Synchrophasors
Shunt compensation installation

- 9 Synchronous Condenser (CS)
- 14 Static Compensator (SVC)
- Total capacity of 7000 MVAR capacitive 4000 MVAR inductive

Main Purposes

- Post-event network stability
- Part of the voltage level control

Actual Control Strategy

- Same strategy in use since deployment in 1970-80.
- Independent voltage setpoint at each substation.
Contribution of compensators is not optimal because of the topology.

For a voltage collapse situation in the load area, northern substations would not « see » the voltage drop, and extra MVAR wouldn’t be generated by SVCs.

Need of a synchronized and robust solution to optimize the use of existing compensators.
Objective
Optimize the use of the actual compensator installation for voltage stability event.

Concept
Synchronized measurement of voltage variation to adjust the compensators setpoint accordingly.

Solution
Control using synchrophasors.

GLOBAL CONTROL
- Use of V_{MTL}
- Telecommunication
- PDC & SPDC

LOCAL CONTROL
- Estimation of V_{MTL}
- Local PMU for V, I
- PMU & SPDC
Effect on the Montreal voltage level following a severe fault:

- Detection of the drop and raising of the compensators voltage setpoint
- Voltage drop in Montreal area

* Simulated 2015 network using PSSE
Fault at the La Vérendrye substation, loss of line 7016 and 1 SVC

MAJOR GAIN ON POWER FLOW LIMITATIONS
Objective

Optimize the use of the actual compensator installation for voltage stability event.

Concept

Synchronized measurement of voltage variation to adjust the compensators setpoint accordingly.

Solution

Control using synchrophasors.

GLOBAL CONTROL

- Use of V_{MTL}
- Telecommunication
- PDC & SPDC

LOCAL CONTROL

- Estimation of V_{MTL}
- Local PMU for V, I
- PMU & SPDC

R&D PILOT PROJECT : LA VÉRENDRYE

1 SVC, 3 Substations and IREQ
> **SVC Control Equipment:**
- Multi-Functionnal MBPSS.
- Control the SVC voltage setpoint.
- Power limitation algorithm.
- IREQ Simulink development.
- Partnership with ABB.

> **Substation Control Unit (UCP)**
- Detection logic algorithm.
- Adjust the MF-MBPSS output with ramp signal.
- IREQ Simulink development.
- Partnership with ABB.

Legend:
- Green circle: Phasor Data Concentrator (PDC Cooper SMP16)
- Green line: Telecommunication
- Yellow square: Phasor Measurement Unit (PMU)
- Blue hexagon: Open Line Detector (DLO)
- Red square: Control equipment connected to SVC
R&D Pilot Project – Challenges

> Multidisciplinary project:
 - Involving 12 teams and more than 30 people.

> Combine technologies:
 - Synchrophasors, telecommunication, substation engineering, SVC control, grid operation, real-time simulation, algorithms and hardware development.

> Real-time test bench:
 - Complete replica of the system
 - Close-loop real-time tests using Hypersim.
 - More than 3600 reliability and security tests.
Wide-Area Voltage Control System replica on Hypersim, IREQ
Voltage at SVC substation is normal: does not observe the drop voltage at Load area

Impact of control on voltage at SVC substation

Impact at Load area:
- Increase of voltage
- Voltage collapse avoided

Voltage drop at Load area

Moment of application of control signal to substation’s SVC

End of test: Back to initial state

Release of control
Field test: Controlled voltage drop at Chenier

Voltage at SVC substation is normal: does not observe the drop voltage at Load area

Impact of control on voltage at SVC substation

Impact at Load area:
- Increase of voltage
- Voltage collapse avoided

Voltage drop at Load area

End of test: Back to initial state

Release of control

Moment of application of control signal to substation’s SVC
Conclusion

- Successful R&D project leading to full WACS deployment.
- Voltage profile improved for extreme contingencies.
- Major gains on power flow limitations.
- Low-cost and robust solution using synchrophasors.