

## Real-time phasor simulation test-bed for secondary voltage control of power grids using wide-area measurements





#### **Outline:**

- Problem statement
- Secondary level Voltage Control
- Model Predictive Control
- Simulation test case
- Real-time testbed
- Simulation results
- Conclusion and future works
- Acknowledgement
- Q & A











#### Problem statement

#### Overview of Hydro Quebec Network



GR



#### Secondary level Voltage Control

- Voltage regulation and tracking at sensitive buses called pilot nodes using:
  - Changing Vref of exciters on the machines
  - Changing Vref or Qref of Static Var compensators
  - Switching capacitor/inductor banks

- ...

- Consider constraints: voltage of the buses and MVAR limits
- Time step of the controller: 10sec.
- Settling time (for 3%) in 1min







#### **Model Predictive Controller**



1) State estimation based on measured output and previous input/output set.

2) Use Identified LTI model to relate outputs for next P future steps, to next M future values of the inputs (M≤P). In this way we will have P equation and M unknown. P and M are prediction and control horizons respectively.
3) Solve Optimization problem with respect to unknown inputs in presence of given constraints



**4)** Apply the first element of control signal obtained from the optimization procedure.

5) Go to step 1 for next sampling time, k+1





#### Simulation Test Case

- IEEE39 bus system used as test case
- pilot buses to install PMUs: buses 1,12 & 28
- Identify linear model of the system: 12 states, 12 inputs, 3 outputs
- Controller designed using MPC toolbox in MATLAB



Selected Pilot buses Change of Vref Change of Qref





#### **Real-time testbed**









### Simulation Results: Voltage Regulation Trip generator: G3 is tripped at t=10s







#### Simulation Results: Voltage Regulation

Trip Line: Bus 8 to Bus 9



**GRÉPCI** 



10

#### Simulation Results: Voltage Tracking

Chang Vref of Bus12 from 0.923p.u to 0.94p.u





**Conclusion and future works** 

- MPC controller can handle voltage regulation and tracking at pilot buses in presence of disturbances.
- A real-time validation is necessary for control algorithms such as MPC who requires time for calculations of the control input.
- For larger scale networks, Centralized MPC computational burden may go beyond sample time of the controller. Decentralized MPC approach can be used as an alternative.





- I would like to thank OPAL-RT technologies, and specifically ePHASORsim team who helped me to accomplish this project.
- THANK YOU ALL



# **Question?**



École de technologie supérieure L'ÉTS est une constituante du réseau de l'Université du Québec