SYNCHROPHASOR STARTER KIT DATA QUALITY

North American Synchrophasor Initiative Chicago, IL

October 14, 2015

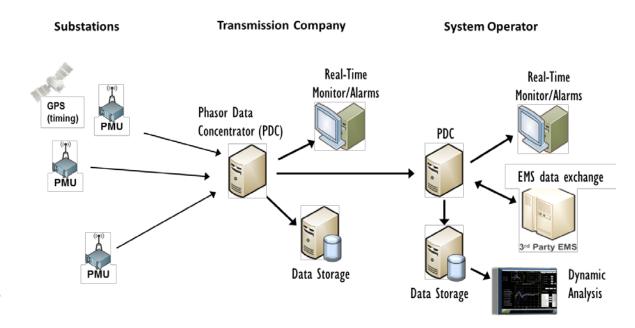
Ken Martin

What is Data Quality?

- Means different things to different people
- Generally can be defined:

Data Quality is any aspect of data that bears on its ability to satisfy a given purpose*

- Quality requirements depend on the application
- Multi-application use must address all data aspects



Basic categories of DQ

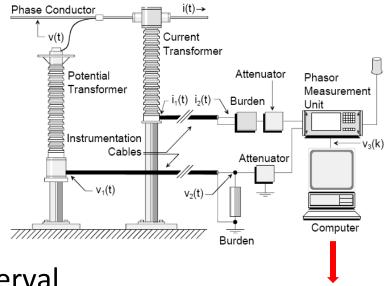
- Data Loss
- Data Corruption
- Inaccurate representation of engineering quantity
- Lack of precision
- Incorrect measurement identification
- Excessive or inconsistent latency

Data Loss

- Multilevel
- Many steps
- Multiple handoffs

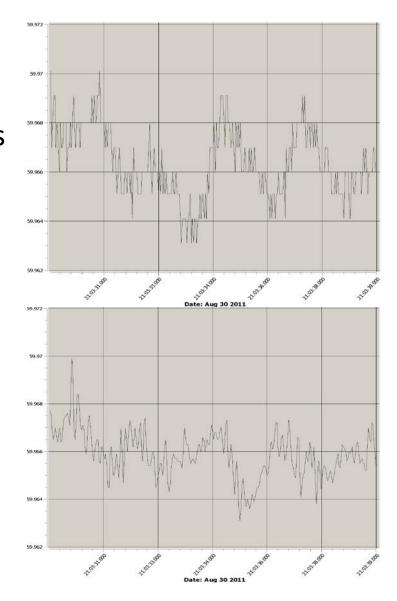
Typical phasor measurement system

- Communications insufficient capacity (links, buffers, etc.), routing errors, priority errors
- Processing overloaded PDCs, data exchange mismatch
- Equipment or program failure


Data corruption

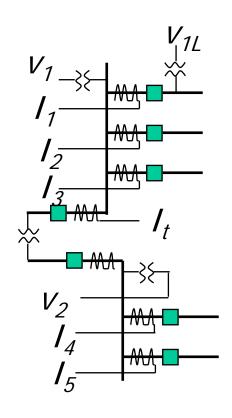
- Scaling and corrections misapplied
- Data type misread
 - Integer/floating point, int15/int32, etc.
- Communication problem
 - Clocking error, overruns, etc.
- Message fragments lost
- Computer and program mishandling

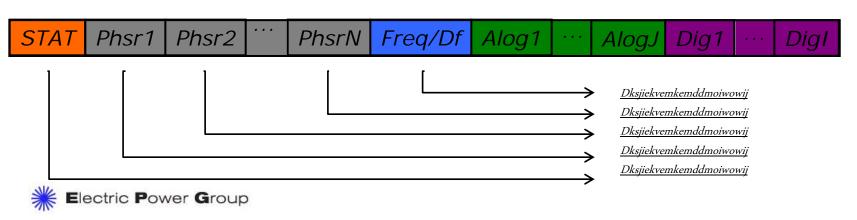
Inaccurate Representation


- Primary transducer scaling CT & PT
 - Imprecise calibration, aging, temperature
 - Ratio selection
 - Mag & phase errors
- Timing errors
 - Primary sync & local clock
 - Phase angle & time errors
- Phasor/frequency estimates
 - Noise in signal
 - Dynamic changes in estimate interval
- Processing errors (PDC & apps)
 - Scaling incorrectly applied
 - Time alignment errors

Data

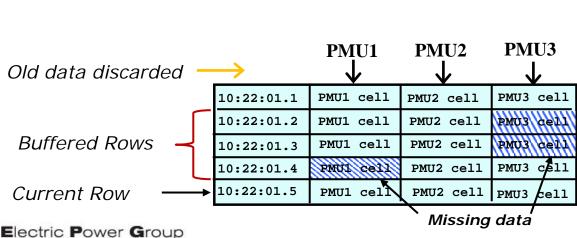
Lack of Precision

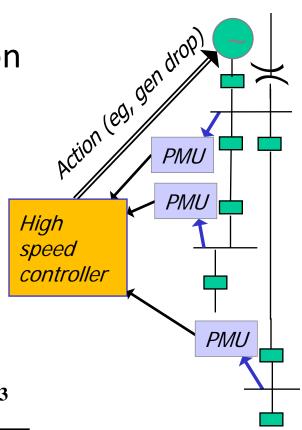

- Input waveform scaling
 - Waveform "steppy" or clipped
 - Inaccurate or noisy measurements
- Output data scaling
 - Overrun with high values
 - Loss of precision in low values
 - Insufficient bits in format
 - Floating point vs integer
- Misapplied compression
 - Loss of measurement detail



Incorrect Identification of Data

- Line PT vs bus PT
- Wrong bus or line
- Measurement mismatch
 - Voltage, current, or frequency
- Configuration error
- Naming error




Excessive or Inconsistent Latency

Excessive latency

Data too late for use by application

- Real-time monitor
- Automatic control
- Inconsistent latency
 - Application processing errors
 - Exceeds PDC wait

DQ Practice

- How should data quality be approached?
- Planning and design
 - Adequate communication sufficient capacity and high reliability (probably the biggest problem area)
 - Timing system with alarming (2nd biggest problem)
 - PMU coverage serving application needs
- Validate installation
 - Calibrate PMU & components
 - Compare measurements with substation measurements
 - Compare at control centers with other systems (SCADA)
- Ongoing monitoring
 - Continuous or periodic problem alarms & cross check
 - Organized maintenance plan for prompt servicing

Summary

Data quality:

- Depends on the actual intended use of the data
- Best practice examines all aspects of data
- Can be broken down into 6 categories: loss, corruption, accuracy, precision, identification, and delivery delays
 - Other categorization forthcoming

Address issues by:

- System planning and design
- Installation and validation
- Monitoring and maintenance program

Thank you

