PMU Installation and Placement

Kyle Thomas
ET Operations Engineering
Dominion Virginia Power

October 14, 2015
PMU Installation

Architecture Design

- Stand-alone PMUs
- Dual-use PMUs
 - DFRs
 - Relays
 - PQ Meters
- Clock synchronization
- Data resolution

- PDC Architecture
 - Include substation PDC?
 - Local storage
 - Down-sample
 - Reduce open ports from substation
 - Central PDC
- CIP versus non-CIP determination
PMU Installation

Inside the substation control house

- **Wiring to the PMUs**
 - Connecting measurements:
 - Voltages (single phase vs. 3-phase)
 - Currents (single phase vs. 3-phase)
 - Digital signals (e.g., circuit breaker status)
 - Analogs
 - Communications
 - Ethernet, fiber, serial, etc.
 - Time Synchronization
 - Satellite clock, direct antenna, PTP, etc.

- **PMU Settings**
 - Standard setting templates

- **Phasor naming conventions**
 - Owner conventions versus ISO/RTO conventions
PMU Installation

Commissioning

• Commissioning is a key step to ensuring field installation is complete and correct
 • Connect PMU stream with stream reader
 • Capture and store small set of data to check (1 minute to 5 minutes)

• Items to validate:
 • Timestamps
 • PMU Status word
 • Phasor magnitudes
 • Phasor angles
 • Frequency & dfdt
 • Any digitals and analogs
PMU Placement Strategies

PMU locations can enable the use of applications and tools

- Place PMUs at locations critical to your system
 - EHV substations, then work on lower voltage levels
 - Critical flow paths
 - Grid interconnections
 - Nuclear plant interfaces
 - Unique system locations (FACTs devices, Arc furnaces, etc.)

- Real-time Applications
 - State Estimation
 - Oscillation Monitoring & Analysis
 - Inter-Area Mode Monitoring & Analysis
 - Angle Difference Monitoring
 - Blackstart and System Restoration
 - Remedial Action Schemes
 - Major Interfaces – IROLs & SOLs
 - Renewable Energy Resource Integration
 - Voltage Stability and Control
PMU Placement Strategies

Offline Applications

- **Generator Model Validation**
- **System Model Validation**
 - Large power plants and generating units
 - Dynamic reactive power resources (ex: FACTs devices)
 - HVDC terminals
 - Automatic controls such as Under-Load Tap Changers (ULTC), phase-shifting transformers, and switched shunt devices
- **Load Model Validation**
 - Cohesive load zones – capture aggregate load response
 - Major system loads – large industrial or block loads
- **Disturbance Monitoring & Event Analysis**
 - PRC-002-2
- **Frequency Response Analysis**
- **Distribution System Monitoring**
PMU Installation and Placement

• Optimize PMU Placement by finding any applications that utilize the same system locations

• PMU Standardization – rapid deployment, locations dependent on project locations

• Two great resources:
 • “Guidelines for Siting Phasor Measurement Units”, NASPI RITT
 • “Reliability Guideline: PMU Placement”, NERC Synchronized Measurement Subcommittee (SMS)
 ▪ Currently in progress