Synchrophasor Research and Education at ComEd

David Schooley, Ph.D., P.E.
October 14, 2015
ComEd/Argonne Effort

- Event Detection
- Spectral Analysis
- Determining “normal” state of the transmission system
Event Detection
Oscillations
Goals and Methods

• To identify “unusual” oscillations in the PMU data and identify their sources.
• To furthermore characterize and track the spectral features over the course of several months.
• Using spectrum analysis, we characterize the frequency-domain content of the PMU signals.
• We used a particularly accurate multitaper method for the spectrum analysis on both day-long data blocks and shorter 15-min segments, to determine changes in the frequency content of the signals.
What is Multitaper?

- Multitaper spectrum estimation is an FFT-based method for calculating the spectrum which is an average of \( K \) different spectrum estimates corresponding with \( K \) different tapers. The tapers depend on the choice of a bandwidth tuning parameter, \( W \).

- The multitaper method produces clearer estimates because the tapers are selected to reduce leakage across frequencies, and statistical consistency is obtained by averaging several independent estimates.

- For more information on spectrum analysis and multitaper methods, contact Charlotte Haley: haley@anl.gov, or Mihai Anitescu, anitescu@mcs.anl.gov.
Spectral Analysis
Additional Oscillation Examples
What is “Normal”

• Real-time evaluation of phasor angles is difficult without knowing what reasonable angles look like

• Simple polar plots don’t tell us anything because there is seldom a reference

• What is “Normal” Analysis
  - N-0, N-1, N-1-1, and N-2 contingency analysis
    - Extraction of phase angles for each contingency
  - Phase angles define envelopes of historical data (N-0) and where the system has been analyzed (N-1, N-1-1, and N-2)
  - Real-time angles outside of these envelopes tell us that the system is operating beyond historical or previously studied limits

![Phase Angle Difference](image)