

NASPI Meeting, Dallas-Fort Worth, TX

Acknowledgement

Research funded by California Energy Commission Public Interest/Energy Research (PIER) Program, CEC-500-08-048, Demonstration of Advanced Synchrophasor Technology for the Integration of Renewables on the California

Contents

Chapter 1: Synchrophasors for Situational Awareness

Chapter 2: Taking Synchrophasors Beyond Visualization

Critical & Emerging Issues for Operators	10
Voltage Stability & Operating Margins	11
Increasing Asset Utilization	14
Renewable Integration	
Automated Event Analysis	

Synchrophasors for Visualization

- Blackouts of 1996 (and 2003) underscored the criticality of real time wide area awareness
- CAISO Phasor Initiative began in September 2002 with the installation of a PDC
- Initial data from 14 PMUs in the BPA area
- Followed by data from SCE, PG&E and WAPA came online
- RTDMS Application developed by EPG

The Goal: Real-time, Wide-area Situational Awareness

From Concept to Control Center

From Concept to Control Center

- Started with a simplistic visualization of the synchrophasor data with RTDMS
- CAISO's phasor application functionality rapidly evolved
 - Event detection & archiving, Alarms, Dynamic Monitoring....
 - Adapted visualization to the requirements of operating staff
 - Dashboard for CAISO centric operations
- RTDMS migrated to control center in 2008

Today

- 56 PMUs reporting into the CAISO
- Migrated to ePDC in 2010
- RTDMS operating with 14 clients at Folsom & Alhambra
- Fully redundant, failover system by 2012
- Integral to real time operations
- Provided critical backup intertie information when entire EMS system went down
- Used by CAISO operators to identify critical events
 (e.g. Pacific-DC Inter-tie problem) and take preventative action

Chapter 2

Taking Synchrophasors Beyond Visualization

Critical & Emerging Issues for System Operators

Critical & Emerging Issues

• How much margin do I have?

Voltage Stability and Margins

- How can we increase asset utilization? (100 MW of increased transfer capability = \$30 M)
 Dynamic Nomograms
- Will renewables integration result in new grid vulnerabilities? Performance Monitoring – Frequency response, oscillations, small signals
- Can I get a quick diagnostic before taking action? *Automatic Event Analysis*

Voltage Stability – Challenges & Goals

- Based on offline operating studies not designed for real time monitoring
- Highly dependent on accurate system topology
- Inflexible; Power-voltage relationships are viewed as static and unchanging
- Offline voltage stability analysis under contingency scenarios is limited to those likely n-1 and n-2 contingencies

<u>Goals</u>

• Expand RTDMS platform for a Synchrophasor Voltage Stability Monitoring (SVSM) application, with the ability to integrate a high speed power flow model

Voltage Stability – SCE's Big Creek System

Dynamic Nomogram - Increase Asset Utilization California – Oregon Interconnection

From Static to Dynamic Nomograms

Static Nomograms

- Based on seasonal studies
- Transmission Owners' worst case scenarios; Preserve path ratings
- Assumptions may not reflect reality
- Operating zone is at best a conservative estimate

Calif.- Oregon Flow (MW)

Dynamic Nomograms

- Validate Static Nomograms
- Monitor and track the actual path capability
- Help define margins accurately or lack of margin
- Dynamic Nomograms will allow operators to work with real margins instead of extra cautious assumptions

Calif.- Oregon Flow (MW)

Renewable Integration

Renewable Integration (cont.)

Automated Event Reports

- Arm the operators with the information they need to make on the spot decisions
- Analysis available immediately
- Summarize the key metrics operator gets a 360° view of all parameters at a glance:
 - Location, status of key metrics (frequency, voltage, damping, power flows

Date & Time	02/01/2011, 15:30:45 – 15:30:53 (8 seconds)			
BA	CAISO			
Reporting PMU	Round Mountain 500 kV			
Description	Malin-Round Mt. #2 500 kV Line Trip			

	Pre	Max/Min	Δ	Post
Frequency	60.01 Hz	59.89 Hz	0.12 Hz	60.01
Voltage	535	560/510	+25/-25	520
Wide Area ∠ Grand Coulee-Devers	70	75/65	5	75
MW	3,700	4,400/2,800	200	3, <mark>5</mark> 00
Segment∠ diff Malin-Round Mt.	40	46/40	6	46
Modes	0.28 Hz 0.34 Hz	N/A	N/A	N/A
Damping	18% 8%	N/A	N/A	N/A

RTDMS – Will provide a production quality, redundant and reliable system that will integrate with other applications (EMS, third party data e.g. weather, historian)

- Voltage Stability
- Dynamic Nomograms
- Renewable Integration
- Automated Event Reports

