LSE for Synchrophasor Data Quality – Implementation and Performance at BPA

Tony Faris, Bonneville Power Administration
Lin Zhang, Electric Power Group

March 23, 2016
Outline

- **WECC Synchrophasor Data Validation and Conditioning Application (SDVCA)**
 - Project Overview
 - Modeless Validation and Conditioning
 - Model-based Conditioning - LSE

- **EPG Enhanced Linear State Estimator (eLSE)**
 - Enhancements
 - eLSE Model Builder
 - Historical Data Testing

- **BPA Field Testing and Results**
 - BPA Testing Environment
 - Live Data Testing with ICCP Integration

- **Lesson Learned and Future Work**
Objective is to develop a validation and conditioning application of PMU data for WECC utilities

Specified to include validation & conditioning using:
 > Modeless algorithms
 > Model Based Linear State Estimator (LSE)

Modeless approach uses the algorithms developed under a DOE sponsored project
 > EPG was the contractor for this project

Model based approach uses the LSE
 > Enhanced VT/Dominion LSE code

Test and demonstration at BPA
 > Test site arranged by WECC
 > Historical data testing using archived data
 > Real-time data testing using a live data feed
Modeless & LSE-Based Data Validation and Conditioning

Algorithms = Detect and Flag Bad Data

Input: Raw C37.118

Model-Less/Algorithmic Validation & Conditioning

Data Quality Reports

Data Quality flags

Model-less conditioned C37.118

Linear State Estimator = Replace Bad Data with Validated Model Based Values

Output Selection

LSE-Based Conditioning

LSE-conditioned C37.118

Output: Conditioned C37.118

© Electric Power Group. 2016. All rights reserved.
Modeless Validation and Conditioning

- **Modeless Error Detection**
 - Communication problems (format, CRC, etc. errors)
 - Problems in measurement (37.118 flags)
 - Timing errors and anomalies
 - Severe measurement anomalies (out of range values)
 - Measurement mismatch (topology comparisons)

- **Modeless Conditioning**
 - Flags bad or suspect values
 - Replace with user set value (NaN, last good, set number)
Model Based Conditioning – LSE

- Network Model (CIM format)
 - Converted into LSE format model
- PMU Data
 - Real-time or recorded
- Topology Info
 - From EMS or recorded

Diagram:

- **C37.118 PMU data**
- **Topology Information**
- **LSE Application**
- **Utility Network Model (CIM)**
 - Estimated Synchrophasor Data
 - Virtual PMU’s with Estimated Values
 - List of Measurement Anomalies
EPG’s eLSE and Major Enhancements

- EPG started with this open source code and developed a production grade eLSE that incorporates enhancements to operate on complex systems such as the WECC/BPA system.

- Seven major enhancements
 - Bad data detection and identification module
 - Series Capacitor
 - Shunt capacitor/reactor
 - Split bus
 - Naming convention
 - Bypass breaker modeled in line
 - Breaker status interface to accept Inter-Control Center Communications Protocol (ICCP)
eLSE Network Model Builder – Four Major Components

- Automatic CIM parsing engine
 > Parse the CIM model and convert it to LSE model

- Mapping File Creation
 > Mapping PMU signals to LSE model

- Signal mapping engine
 > Read the mapping file and automatically map PMU signal to the LSE model

- GUI of network model builder
 > Edit network model, eg add or remove lines, breakers
 > Update models
Field Testing on BPA System
65 Observable Substations with PMUs at 37 Substations

- Validated for BPA’s entire 500 kV and portion of 230 kV system
- System reduced to PMU visible area
 > 37 Substations with PMU installed
 > 220 phasor measurements
 > 65 observable substations
- Run properly at 60 frames per second
- Testing with historical and live PMU data

<table>
<thead>
<tr>
<th>Elements</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substations</td>
<td>65</td>
</tr>
<tr>
<td>Lines</td>
<td>96</td>
</tr>
<tr>
<td>Line Segments</td>
<td>126</td>
</tr>
<tr>
<td>Transformers</td>
<td>129</td>
</tr>
<tr>
<td>Nodes</td>
<td>3091</td>
</tr>
<tr>
<td>Breakers</td>
<td>849</td>
</tr>
<tr>
<td>Switches</td>
<td>2357</td>
</tr>
<tr>
<td>Series Capacitors</td>
<td>18</td>
</tr>
<tr>
<td>Shunt Capacitors</td>
<td>112</td>
</tr>
<tr>
<td>Observable buses</td>
<td>78</td>
</tr>
</tbody>
</table>
Historical Event Testing Results

- Chief Joseph Brake event

Chief Joseph 500 kV East Bus Voltage Magnitude

LSE Estimated
Raw PMU measurement

2kV
• SDVCA replaces measured values with state estimates
• Estimates stored in temporary LSE Data Archive
• Estimate compared to raw signal for reasonability
Live Data Testing Result – 17 hours
With Real-Time ICCP Update

White: SDVCA Red: Phase A Blue: Phase B Green: Phase C
Recent Live Data Testing Result - 24 hours

With Real-Time ICCP Update

White: SDVCA
Red: Raw
Recent Live Data Testing Result – another 24 hours
With Real-Time ICCP Update

White: SDVCA
Red: Raw
Lessons Learned

- **Standard CIM Model**
 > “Common” information model, NOT common, customization required

- **Network parameters**
 > Critical for LSE estimated results

- **Good redundancy of measurements**
 > Help detect bad data and give better estimated results

- **PMU digitals for breaker status, instead of using ICCP**
 > No time skew issue if using PMU digitals
Future Work

- Continue long term testing
- Automate comparison of estimate vs. raw data
 - Flag large differences, trace to issues in field
- Pursue issues with network model parameters
 - Update models as necessary
- Test applications using conditioned data
- Investigate use of LSE in operational environment
Thank You - Questions?

Tony Faris
ajfaris@bpa.gov
5411 NE Highway 99
Vancouver, WA 98663
360-418-2005
www.bpa.gov

Lin Zhang
zhang@electricpowergroup.com
201 S. Lake Ave., Suite 400
Pasadena, CA 91101
626-685-2015
www.electricpowergroup.com