Use of Phasor Data for Real-Time Operations

NASPI Meeting
June 2009
Thomas Botello
Manager of SCE Grid Control Center

Southern California Edison
Agenda

• Disturbance Examples
• Operational Perspective
• Barriers
• SCE approach
• The Future
SOUTHERN CALIFORNIA EDISON (SCE)

One of the Largest Electrical Utilities in the U.S.

- 50,000 Square Mile Territory
- Serving 430 Cities and Communities
- 4.7+ Million Customers
- 70,000 New Customers Per Year
- 850 Substations
- 23,303 MW Average Load
- 5400 Transmission & Distribution Circuits
- 3281 Transformers:
 - 59 AA Banks
 - 188 A Banks
 - 3034 B Banks

© Copyright 2009, Southern California Edison
Disturbances

- November 1998 Breaker Failure SCE Sustained Low Voltage
 - System stressed
 - Normal load
 - Market generation dispatch
 - High path flows
 - Event results in path overload
 - Sustained load voltage
 - Action necessary to prevent voltage collapse
 - Potential cascading event

- January 2008 System Oscillations
 - Loss of transformer 500 kV transformer initiating event
 - System swings lasted over an hour
 - Pacific DC ramped down and subsequently to zero to resolve problem
 - Unfortunately phasor provided data was not the diagnostic used to determine there was a problem

- What problem are we trying to solve?
 - Lets recognize we may not be able to solve all problems
 - We can’t boil the ocean
One Operators Opinion

• Since 1996 we have known in WECC that planning studies do not reflect real time conditions

• What do I do with phasor information?
 – Pre-contingency?
 – Post-contingency?
 – Who has agreed to these actions?
 – Are we all looking at the same information?
 – Can we all agree what the solution is?
 – Who ultimately directs the corrective action?
 – Who is responsible for the economic consequences of these actions?
Operational Perspective

• Lets walk before we run
 – We need to know what problem we are trying to solve
 – All disturbances are not created equal

• SCADA versus PMU data
 – Integration or separation
 – How can the operators determine solutions
 – When is SCADA latency good enough
 – Intelligent alarming possibilities

• When should we take action?

• When should we wait?
Barriers

• Engineers and Operators
 – Communication
 – Who carries the torch

• Industry
 – Expectations
 – Buy in on solutions
 – Economic impact of path reductions
 and generation re-dispatch

• Funding
 – The time is right
 – What are the right projects to work on

• Markets
 – Consideration to market implications
 – What is the price for operating more
 reliably
SCE Approach

- Control Center Changes
 - Introduction of applications
 - Visual presentation
 - EMS State Estimation enhanced with phasor data

- Engineering Engagement
 - Workshops
 - Training

- Collaborative Solutions
 - Situational awareness
 - New tools
 - SCE Smart Grid initiative
The Future

• Lets work together to deliver a solution
 – Improve the accuracy of existing tools
 – Provide a compelling interconnection wide case to affected entities that proactive response is warranted
 – Give engineers information they need to determine how to improve reliability
 – That will give operators what they need to maintain reliability
QUESTIONS?

THANK YOU FOR YOUR ATTENTION