Enabling Micro-Synchrophasor Data Analytics

Omid Ardakanian University of California, Berkeley

NASPI March 2016

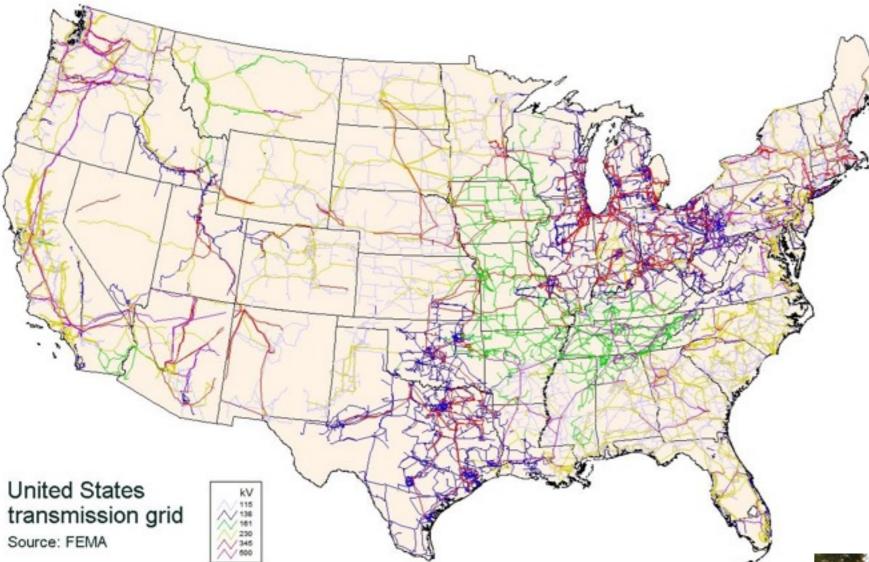
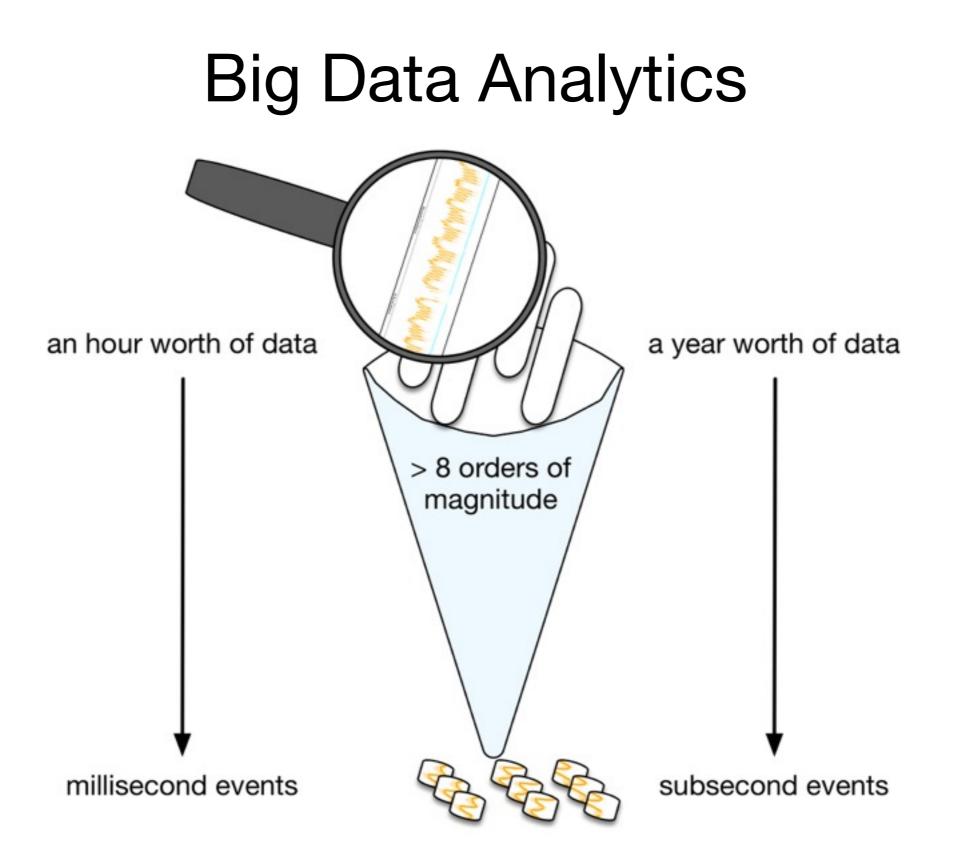


image source: power standards lab



120 samples per second -> 3.8 billion samples per stream per year -> 30 billion bytes per stream per year

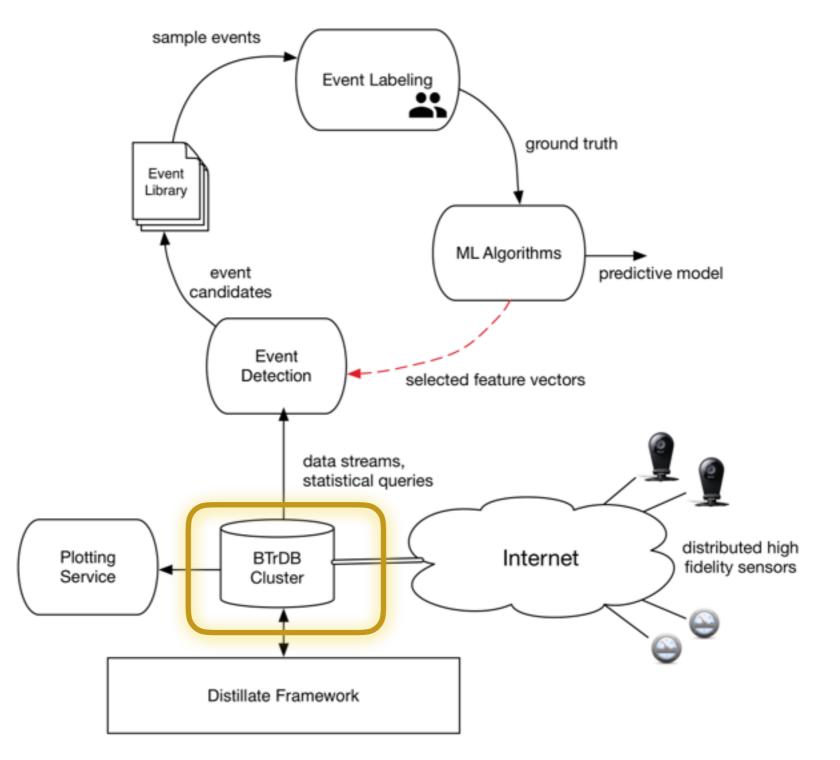
Introduction

- High-precision high-sample-rate data from distributed high fidelity sensors
 - * many sensors, a wide range of temporal scales, *rare* events
- Finding anomalies in these systems is the holy grail
 - failing to identify and react to critical events in a timely manner may cost millions of dollars
- Energy data analytics (both real-time and historical) is critical yet computationally expensive
 - * the ability to detect, analyze, and control with a limited time budget

Goals

- Detect: identify rare events
 - using an efficient search algorithm that is logarithmic in the size of the data set and linear in the number of events that are found
- Analyze: run compute intensive tasks on smaller chunks of data
- Control: take corrective/preventive actions (in real-time applications)

System Architecture



BTrDB Timeseries Database

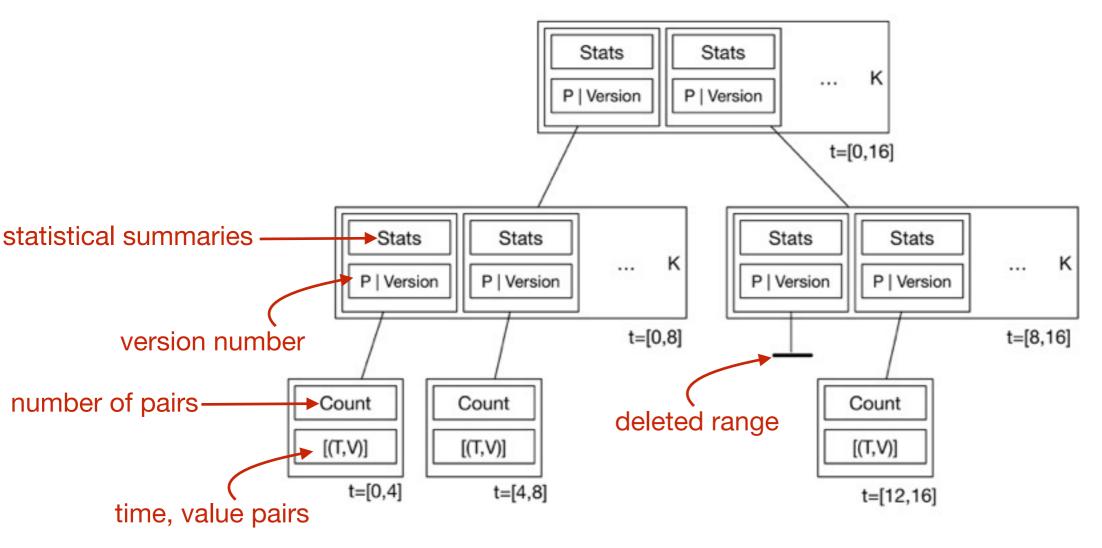
- High throughput, fixed response-time timeseries store running on a four-node cluster
 - 53 million inserted values per second
 - 119 million queried values per second
- Provides nanosecond timestamp precision
- Supports out-of-order arrivals

References:

[1] Michael Andersen, Sam Kumar, Connor Brooks, Alexandra von Meier, David Culler, "DISTIL: Design and Implementation of a Scalable Synchrophasor Data Processing System", IEEE SmartGridComm, 2015.
[2] Michael P Andersen and David E. Culler, "BTrDB: Optimizing Storage System Design for Timeseries Processing", USENIX Conference on File and Storage Technologies, 2016.

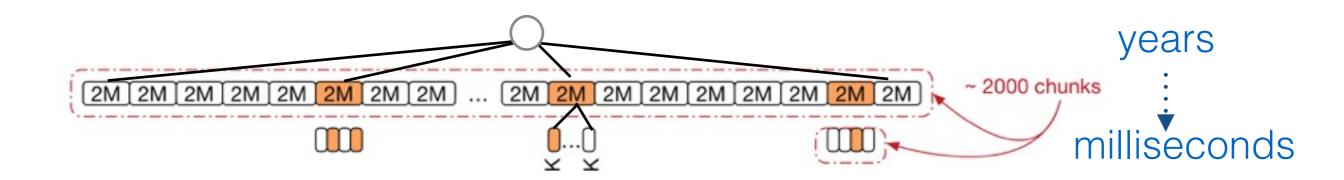
Abstraction for Timeseries Data

 Time-partitioning version-annotated copy-onwrite K-ary tree

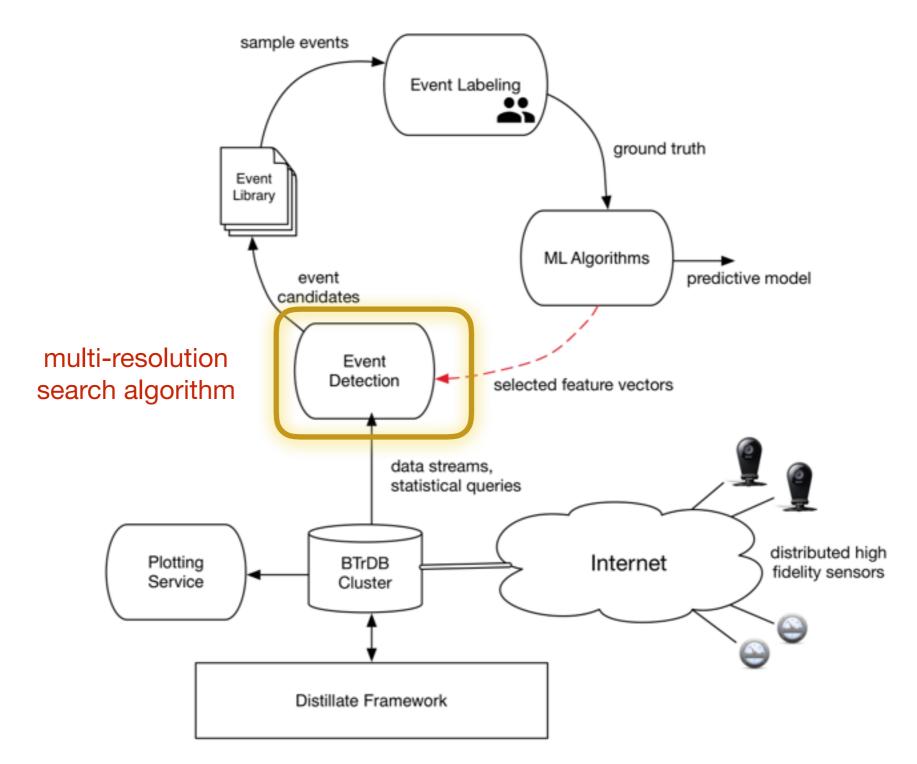


Statistical Summaries

• statistical summaries (max, min, average, and count) are stored at different temporal resolutions



System Architecture



Example Query

Find 5-second intervals that contain at least one value greater than a threshold

Example Query

Find 5-second intervals that contain a value greater than a threshold

- Query **max** at the given temporal resolution
- Dive down if max_{resolution} > threshold
- Repeat for the next temporal resolution until the desired resolution is reached

Multi-Resolution Search

- Start with a definition of the event (search criteria)
- Query statistical summaries of data at a given temporal resolution
- Compare a function of these statistical summaries against a threshold
- Dive down if the condition is satisfied
- Query raw data when the desired resolution is reached and run your algorithm on a small chunk of data

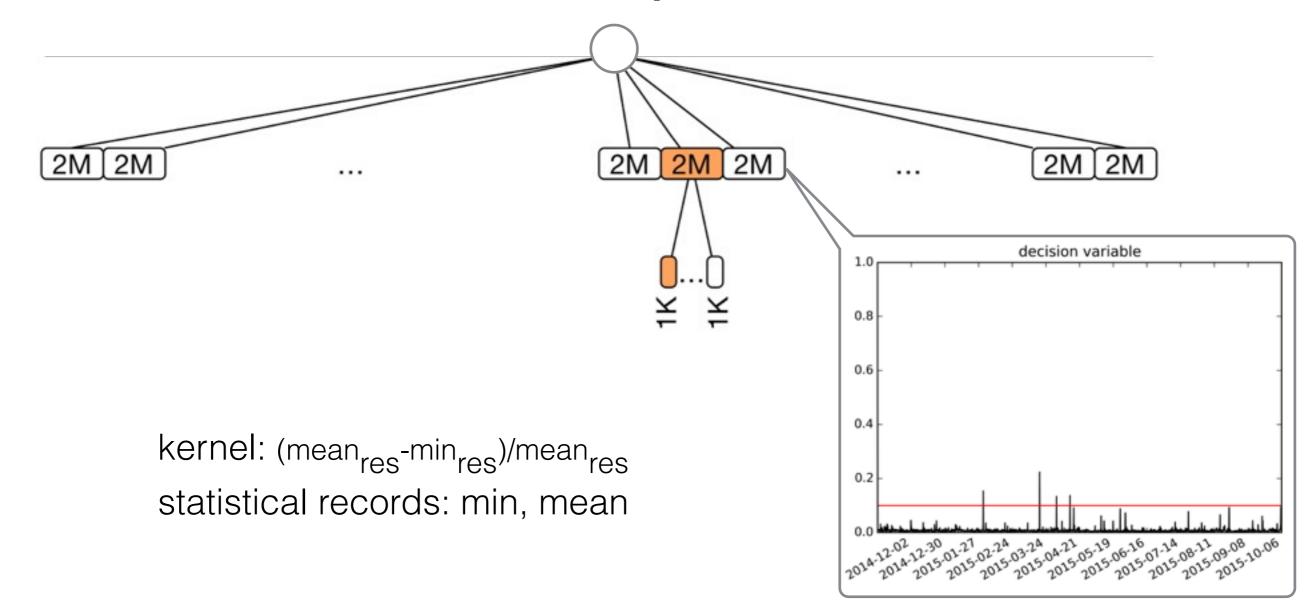
Interesting Events

- voltage sags
 - voltage magnitude stream
- tap changing events
 - angle difference stream
- reverse flows
 - real power or power factor stream
- switching events

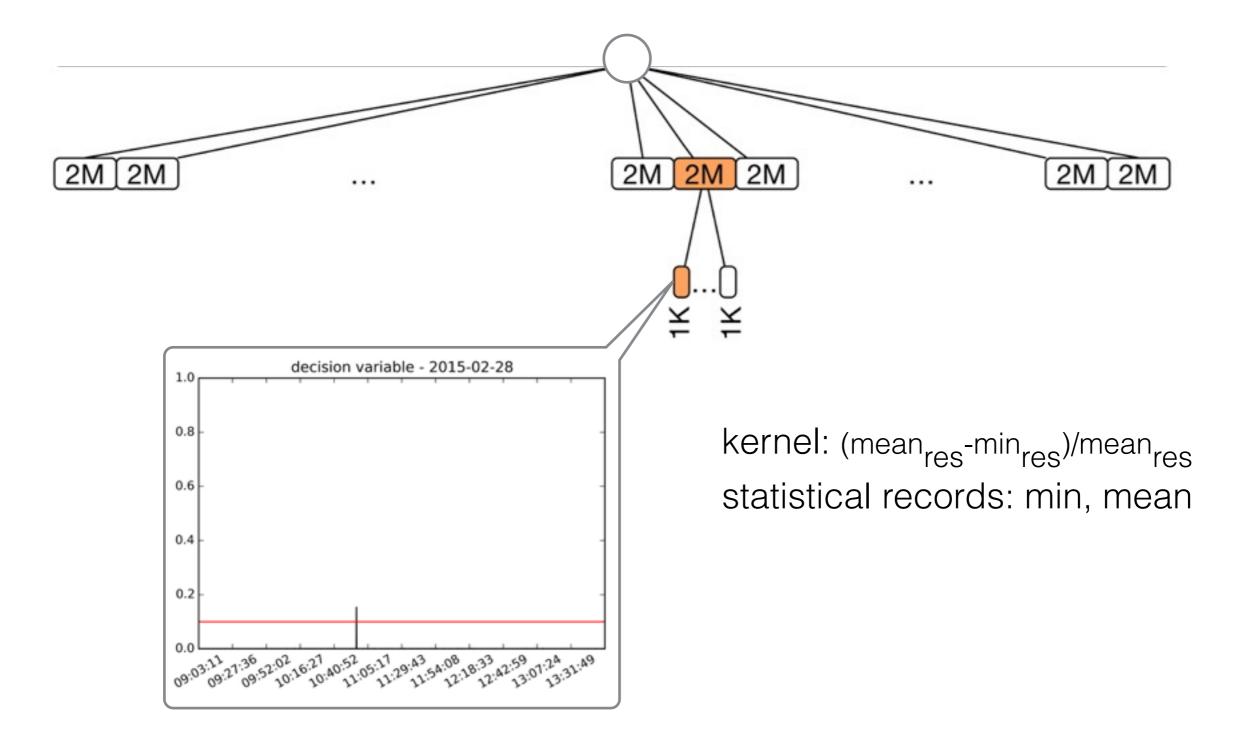
. . .

Case Study: Voltage Sag Detection

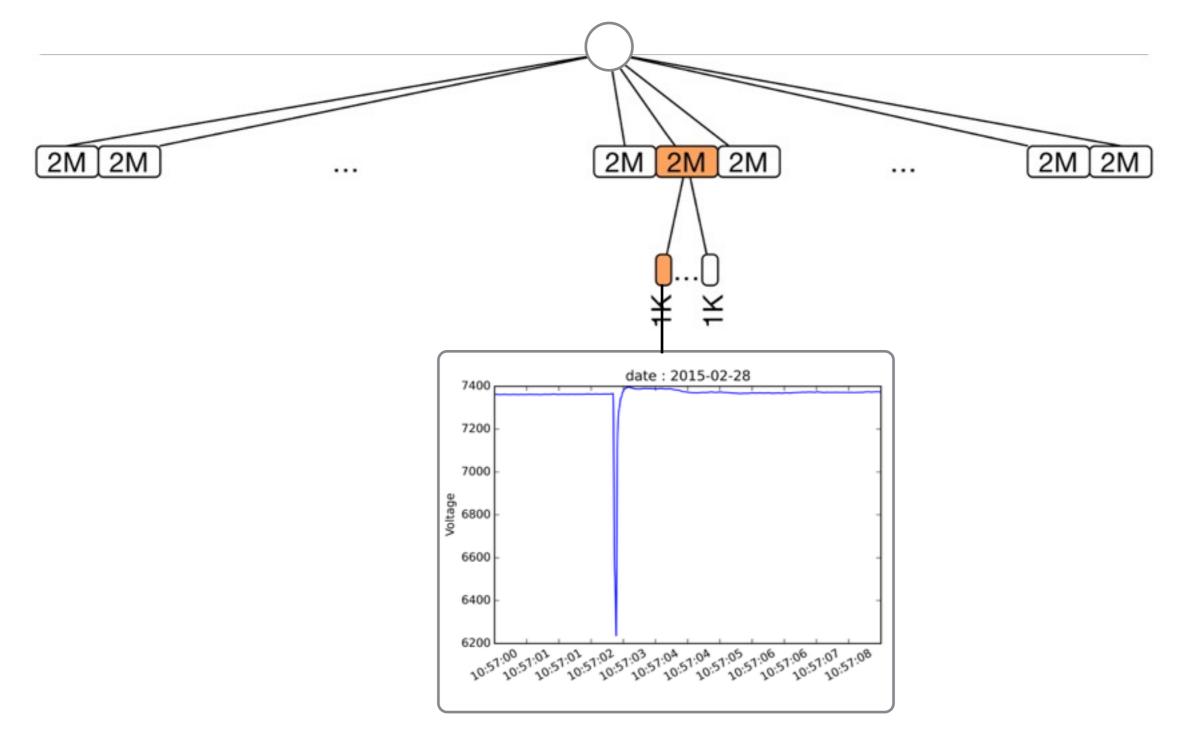
Step 1: Querying Statistical Summaries at a Given Temporal Resolution



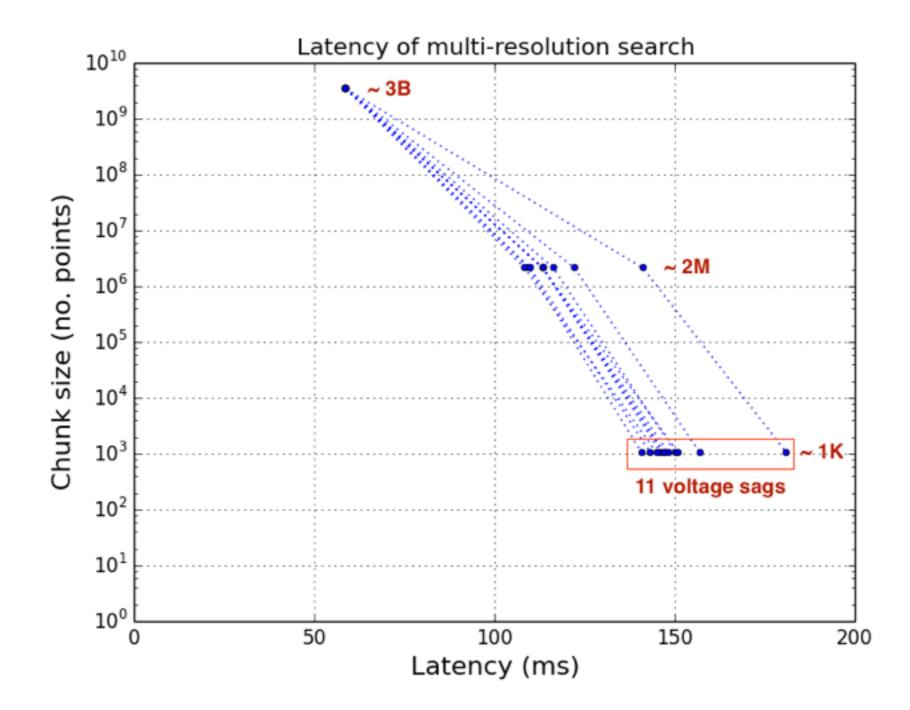
Step 2: Diving Down



Step 3: Querying Raw Data



Evaluation



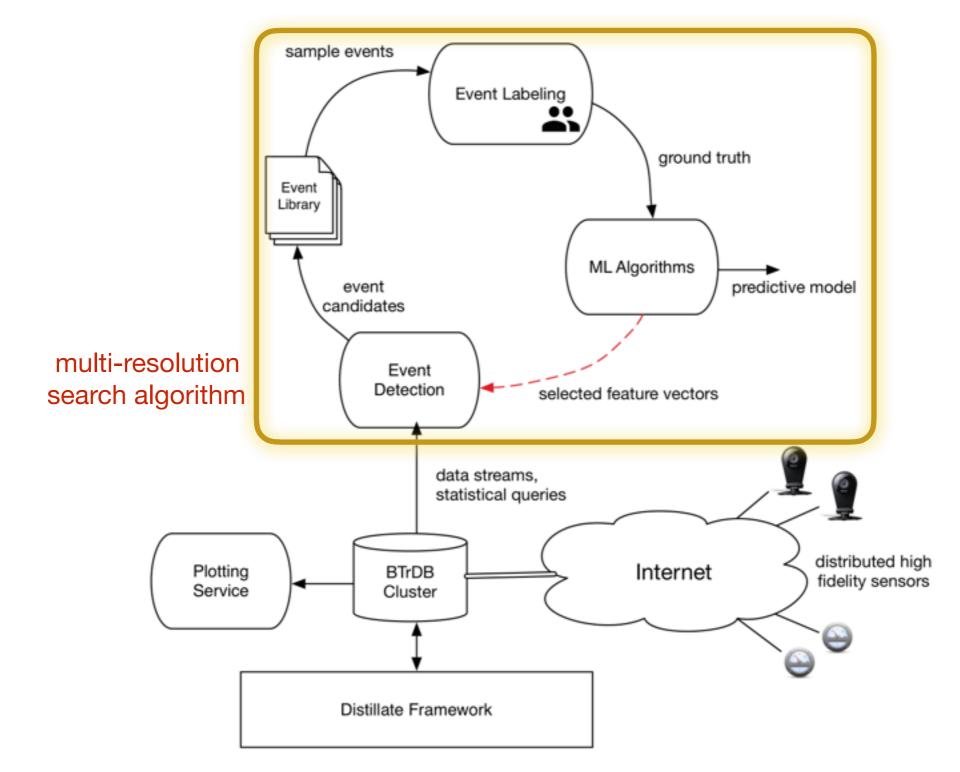
Example Result

			(4		
	no. events (0.05)	runtime (ms)	no. events (0.1)	runtime (ms)	no. events (0.15)	runtime (ms)	no. events (0.2)	runtime (ms)		days
/clean/GP_BUS1/L1MAG	9	431.77	4	237.13	0	76.78	0	88.41	ŀ	135
/clean/GP_BUS1/L2MAG	10	394.39	4	226.85	1	115.30	0	70.55	·	135
/clean/GP_BUS1/L3MAG	5	309.07	2	163.25	1	118.95	0	77.08	ŀ	135
/clean/switch_a6/L1MAG	14	666.59	6	273.01	3	194.95	1	132.75	;	330
/clean/switch_a6/L2MAG	21	947.24	11	523.78	4	235.44	3	190.83	:	330
/clean/switch_a6/L3MAG	11	608.94	4	318.44	2	213.57	0	90.06	;	330
/clean/RPU/CE_CERT_Bld_1200/L1MAG	8	312.53	2	68.41	1	64.93	1	66.55	1	86
/clean/RPU/CE_CERT_Bld_1200/L2MAG	12	379.19	4	163.71	3	119.51	2	112.95	8	86
/clean/RPU/CE_CERT_Bld_1200/L3MAG	12	627.72	4	228.18	2	111.41	2	133.00	1	86
					· · · · · · · · · · · · · · · · · · ·				<u> </u>	

10% drop

logarithmic in the size of the data set and linear in the number of events that are found

Event Detection: A Data Driven Approach



Takeaways

- Complexity of the search algorithm is O(nLog(L))
 - Locating and analyzing rare events among billions of time-value pairs is possible in a fraction of a second
- Defining a kernel function can be quite challenging for some detectors
- Machine learning techniques can be used to develop sophisticated detectors