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Dynamic State Estimation

I Discrete-time nonlinear system{
xk = f(xk−1,uk−1) + qk−1

yk = h(xk,uk−1) + rk

I Dynamic state estimation:

given xk−1 and yk, estimate xk

I For power systems:

I x: internal states of generators

I y comes from synchrophasors
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Challenge 1: Model Uncertainty

I Power system model can be inaccurate

I unknown inputs
ẋ = Ax + Bu + Bww + φ(x, u)

I unavailable inputs (not measured or difficult to measure)

I parameter inaccuracy

I Are more detailed models always better?

I difficult to validate and calibrate

I higher computational burden
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Challenge 2: Cyber Attacks against PMU Measurements

I National Electric Sector Cybersecurity Organization Resource
(NESCOR) failure scenarios

I measurement data compromised due to PDC authentication compromise

I communications compromised between PMUs and control center

I Different types of attacks against measurements

I data integrity attack

I denial of service attack

I replay attack
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Kalman Filters

I Extended Kalman Filter

I used for linearized model

I need to calculate Jabobian

I Unscented Kalman Filter

I used for nonlinear model

I no need to calculate Jabobian

I numerical stability problem

I Cubature Kalman Filter

I used for nonlinear model

I large system with high nonlinearity

I better numerical stability
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Dynamic Observers

I Real system dynamics

ẋ = Ax + Bu + Bww + φ(x,u)

I Observer dynamics

˙̂x = Ax̂ + Bu + φ(x̂,u) + L
(
y− h(x̂)

)
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W. Zhang, H. Su, H. Wang, and Z. Han, “Full-order and reducedorder observers for one-sided lipschitz nonlinear
systems using riccati equations,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 12, pp. 4968–4977, 2012.

7 / 15



A Realistic Scenario for Dynamic State Estimation

I 16-machine 68-bus system

I Power system is modeled as 10th order nonlinear system

I Gaussian Process noise and measurement noise

I Model uncertainty

I unknown Bww

w(t) =



0.5 cos(ωut)
0.5 sin(ωut)
0.5 cos(ωut)
0.5 sin(ωut)

−e−5t

0.2 e−t cos(ωut)
0.2 cos(ωut)
0.1 sin(ωut)


I estimator only knows steady-state values of Tm and Efd

I reduced admittance matrix is the steady-state one within 1 second after fault

I Initial guess of the states is far from the real states
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Data Integrity Attack

Data integrity attack: 8 out of 64 measurements are scaled by k or 1/k
(k = 0.6)
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Data Integrity Attack (cont’d)
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Data Integrity Attack (cont’d)
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Denial of Service Attack

8 measurements do not update for t ∈ [3s, 6s]

Time (second)
0 2 4 6 8 10

N
or
m

of
R
el
a
ti
ve

E
rr
o
r

10-2

100

102

104
EKF
SR-UKF
CKF
observer

Time (second)
0 2 4 6 8 10

A
b
so
lu
te

E
rr
or

10-4

10-2

100

102

EKF
SR-UKF
CKF
observer

Norm of relative error of states Absolute error of measurements

12 / 15



Replay Attack

8 measurements for t ∈ [3s, 6s] equal those t ∈ [0s, 3s]
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Conclusion

I We design a realistic scenario for DSE with significant model
uncertainty and cyber attacks

I We compare different estimation approaches

I observers are more robust to model uncertainty and cyber attacks

I observers have theoretical guarantee for convergence

I observers are easier to implement
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