Interarea Model Estimation for Large-scale Electric Power Systems using Synchronized Phasor Measurements

Aranya Chakrabortty
University of Washington, Seattle

Joe H. Chow
Rensselaer Polytechnic Institute, Troy, NY

Armando Salazar
Southern California Edison, Rosemead, CA

NASPI Working Group Meeting,
October 17, 2008
Two-machine Equivalents

Our Approach:

Dynamic Measurements

Signal Separation

Interarea Oscillation

Model Identification & Reduction Problem
‘Interarea Model Estimation (IME)’
IME: Method

\[\tilde{I} = I \angle \theta_1 \]

\[\tilde{V}_1 = V_1 \angle \theta_1 \quad \tilde{V}_2 = V_2 \angle \theta_2 \]

Problem: How to estimate all parameters?

\[x_1, x_2, H_1, H_2 \]

\[\dot{\delta} = \omega \]

\[2 \frac{H_1 H_2}{H_1 + H_2} \dot{\omega} = \frac{H_2 P_{m1} - H_1 P_{m2}}{H_1 + H_2} - \frac{E_1 E_2}{(x_1 + x_e + x_2)} \sin \delta \]

Swing Equation
IME: Method (Reactance Extrapolation)

- **Key idea**: Amplitude of voltage oscillation at any point is a function of its electrical distance from the two fixed voltage sources.

\[
\tilde{V}(x) = [E_2(1-a) + E_1a \cos(\delta)] + j E_1a \sin(\delta), \quad a = \frac{x}{x_1 + x_e + x_2}
\]

- Voltage magnitude: \(V = |\tilde{V}(x)| = \sqrt{c + 2E_1E_2(a-a^2)\cos(\delta)}, \quad c = (1-a)^2E_2^2 + a^2E_1^2 \)

- Assume the system is initially in an equilibrium (\(\delta_0, \omega_0 = 0, V_{ss} \)):

\[
\Delta V(x) = J(a, \delta_0) \Delta \delta
\]

\[
J(a, \delta_0) := \left. \frac{\partial V(a, \delta_0)}{\partial \delta} \right|_{\delta = \delta_0} = \frac{-E_1E_2}{V(a, \delta_0)}(a-a^2)\sin(\delta_0)
\]
Reactance Extrapolation

\[\Delta V(x) = \frac{-E_1 E_2}{V(a, \delta_0)} (a - a^2) \sin(\delta_0) \Delta \delta \]
Reactance Extrapolation

\[\Delta V(x) = \frac{-E_1 E_2}{V(a, \delta_0)} (a - a^2) \sin(\delta_0) \Delta \delta \]

\[\Delta V(x) V(a, \delta_0) = -E_1 E_2 \sin(\delta_0) (a - a^2) \Delta \delta(t) \]

can be computed from measurements

\[V_n(x, t) = A (a - a^2) \Delta \delta(t) \]

solution of a linear differential equation
Reactance Extrapolation

\[\Delta V(x) = \frac{-E_1E_2}{V(a, \delta_0)} (a - a^2) \sin(\delta_0) \Delta \delta \]

\[\Delta V(x)V(a, \delta_0) = -E_1E_2 \sin(\delta_0) (a - a^2) \Delta \delta(t) \]

Refer to as: ‘Normalized voltage’

Note: **Spatial** and **temporal** dependence are separated

- Fix time: \(t=t^* \)

\[V_n(x, t^*) = A (a - a^2) \Delta \delta(t^*) \]

How can we use this relation to solve our problem?
Reactance Extrapolation

\[V_n(x,t^*) = A (a - a^2) \Delta \delta(t^*) \]

At Bus 1,

\[\delta \Delta - \frac{1}{2} \left(\frac{V_{Bus1}}{V_{Busn}} \right) \]

At Bus 2,

\[a_2 = \frac{x_2}{x_1 + x_e + x_2} \quad \rightarrow \quad V_{n, Bus2} = A \left(a_2 - a_2^2 \right) \Delta \delta(t^*) \]

\[\frac{V_{n, Bus2}}{V_{n, Bus1}} = \frac{a_2(1 - a_2)}{a_1(1 - a_1)} \]

At Bus 1,

\[a_1 = \frac{x_e + x_2}{x_1 + x_e + x_2} \quad \rightarrow \quad V_{n, Bus1} = A \left(a_1 - a_1^2 \right) \Delta \delta(t^*) \]

\[\frac{V_{n, Bus3}}{V_{n, Bus1}} = \frac{a_3(1 - a_3)}{a_1(1 - a_1)} \]

• Need one more equation
 - hence, need one more measurement at a known distance
Reactance Extrapolation

\[V_n(a) = A \, a \, (1 - a) \]

Key idea: Exploit the spatial variation of phasor outputs
IME: Method (*Inertia Estimation*)

- From linearized model
 \[f_s = \frac{1}{2\pi} \sqrt{\frac{E_1 E_2 \cos(\delta_0) \Omega}{2H(x_e + x_1 + x_2)}} \]

 where \(f_s \) is the measured swing frequency and \(H = \frac{H_1 H_2}{H_1 + H_2} \)

- For a second equation in \(H_1 \) and \(H_2 \), use law of conservation of angular momentum
 \[
 2H_1 \omega_1 + 2H_2 \omega_2 = 2 \int (H_1 \dot{\omega}_1 + H_2 \dot{\omega}_2) dt = \int (P_{m1} - P_{e1} + P_{m2} - P_{e2}) dt = 0
 \]
 \[
 \Rightarrow \quad \frac{H_1}{H_2} = -\frac{\omega_2}{\omega_1}
 \]

- However, \(\omega_1 \) and \(\omega_2 \) are not available from PMU data,

 → Estimate \(\omega_1 \) and \(\omega_2 \) from the measured frequencies \(\xi_1 \) and \(\xi_2 \) at Buses 1 and 2
IME: Method *(Inertia Estimation)*

- Express *voltage angle* θ as a function of δ, and differentiate wrt time to obtain a relation between the machine speeds and bus frequencies:

$$
\xi_1 = \frac{a_1 \omega_1 + b_1 (\omega_1 + \omega_2) \cos(\delta_1 - \delta_2) + c_1 \omega_2}{a_1 + 2b_1 \cos(\delta_1 - \delta_2) + c_1}
$$

$$
\xi_2 = \frac{a_2 \omega_1 + b_2 (\omega_1 + \omega_2) \cos(\delta_1 - \delta_2) + c_2 \omega_2}{a_2 + 2b_2 \cos(\delta_1 - \delta_2) + c_2}
$$

- ξ_1 and ξ_2 are measured, and a_i, b_i, c_i are known from reactance extrapolation.

- Hence, we calculate ω_1/ω_2 to solve for H_1 and H_2.

where,

$$
a_i = E_1^2 (1-r_i)^2, \quad b_i = E_1 E_2 r_i (1-r_i),
$$

$$
c_i = E_2^2 r_i^2$$

![Plot showing normalized reactance and frequency](image-url)
Illustration: 2-Machine Example

- Illustrate DME on classical 2-machine model
- Disturbance is applied to the system and the response simulated in MATLAB

Voltage oscillations at 3 buses

Bus angle oscillations

Bus frequency oscillations

\[G(s) = \frac{s}{sT + 1} \]

DME Algorithm

Exact values:
\[x_1 = 0.34 \text{ pu}, \quad x_2 = 0.39 \text{ pu} \]

\[V_{1m} = 0.0292 \quad V_{2m} = 0.0316 \quad V_{3m} = 0.0371 \]
\[V_{1ss} = 1.0320 \quad V_{2ss} = 1.0317 \quad V_{3ss} = 1.0136 \]
\[V_{1n} = 0.0301 \quad V_{2n} = 0.0326 \quad V_{3n} = 0.0376 \]

DME

Exact values:
\[H_1 = 6.48 \text{ pu}, \quad H_2 = 9.49 \text{ pu} \]

\[H_1 = 6.5 \text{ pu}, \quad H_2 = 9.5 \text{ pu} \]
IME for Complex System Topologies

- Intermediate voltage support

Shunt Capacitance

\[\tilde{E}_1 = E_1 \angle \delta_1 \]

Static VAr Compensation

\[\tilde{E}_1 = E_1 \angle \delta_1 \]

Generator Support
IME for Complex System Topologies

Static VAr Compensation

\[
\begin{align*}
\tilde{E}_1 &= E_1 \angle \delta_1 \\
\tilde{E}_2 &= E_2 \angle \delta_2 \\
1 &\quad 2 \quad 3 \\
\tilde{V}_1 &\quad \tilde{V}_c &\quad \tilde{V}_2 \\
1 &\quad jx_1 &\quad jx_{e1} &\quad jx_{e2} &\quad jx_2 \\
\tilde{I}_1 &\quad \tilde{I}_c &\quad \tilde{I}_2 \\
\end{align*}
\]

- \(\dot{B} = \frac{B}{\tau} + \frac{k}{\tau} (V_r - V_c) \), \(B = \frac{1}{x_c} \)
- \(B = k(V_r - V_c) \) (assuming \(\tau \) is small)
- \(\tilde{V}_c = f_3(E_1, E_2, \delta, x_{e1}, x_{e2}, x_c(V_c)) \)

\[\text{solve for a quadratic in } V_c(\delta) \]

\[B = k(V_r - V_c(\delta)) \]

\[|\tilde{V}(x)| = f_4(E_1, E_2, \delta, x_{e1}, x_{e2}, x, B(\delta)) \rightarrow \text{extra terms in } V_n \]
Application to WECC Data

Needs processing to get usable data

- Sudden change/jump
- Oscillations
- Slowly varying steady-state (governor effects)
WECC Data

Band-pass Filter
Choose pass-band covering typical swing mode range

Oscillations

Quasi-steady State
• Can use modal identification methods such as: **ERA, Prony, Steiglitz-McBride**
Conclusions

• We developed novel methods for model identification and reduction of two-area power systems to represent interarea dynamics
 - spatial variation patterns of phasor variables are exploited

• Fast sampled *dynamic phasor measurements* are used for building these tools

• Both with and without voltage support cases are considered

• Appropriate signal processing tools are developed

• The method enables better estimation of energy margins, better estimation of wave speeds, easier design of PSS, etc.
Thank You