Precursor Signals of Cascading Outages based on Visualization of PMU Data

NASPI Working Group Meeting
October 16-17, 2008

Stephen Lee
Senior Technical Executive

Kai Sun
Project Manager
Outline

• Objective:
 – Prediction of Potential Cascading Outages

• Idea & Methodology:
 – Recognizing Precursor Signals
 – Visualizing PMU-based Vulnerability Indices

• Case Study
 – WECC System

• Conclusions
Can simulation-based DSA predict potential cascading outages?

- Shortcomings of simulation-based DSA
 - Limited fault scenarios
 - SCADA systems cannot capture real-time changes of generation or load
 - State estimators may fail to converge
 - High computation burdens of time domain simulations
 - May not work for cascading with successive events
Any precursor signals?

- Abnormal values
- Abnormal behaviors
- PMUs can find them
Abnormal Behaviors in Phase-Space Visualization

Human can tell them easily thru proper visualizations

Stable generator

Abnormal behavior (marginally stable generator)

Unstable generator
How to use PMUs to find precursor signals?

• Define vulnerability indices, computable in real time by PMU data (e.g. V_i, θ_i and P_{ij})
 – Transient Stability Index:
 • Approximate inter-area potential energy
 – Voltage Stability Index:
 • Weighted average of critical bus voltages
 – Small-Signal Stability Index:
 • Damping ratio

• Visualize the indices:
 – To recognize precursor signals of instability
 – To study different stability issues during cascading
PMU-based DSA Scheme

- Define vulnerability indices
- Offline study precursor signals from visualizations of the indices

Real-time recognize precursor signals

Tell operators
Case Studies: WECC

- **Inter-area behaviors:**
 - 2 PMUs in two areas
 - 1 PMU at the interface

- **Scenario-1: 6 faults**
 - Every 5s, add a 3φ fault and trip the line
 - Instability after the 6th trip

- **Scenario-2: scheduled line outages**
 - Every 30s, remove a line
 - Instability after the 6th line is removed

Figure 5.7: WSCC 179-bus model
Scenario 1: six three-phase faults
Transient Stability Index

Graph showing transients stability index over time (t in seconds). The graph includes:
- Upper limit
- Stability margin
- Index

The graph illustrates the variation of these indices over a period of 30 seconds.
Transient Stability Index in Phase Space

Abnormal pattern after the 5th fault
Voltage Stability Index
Phase-space Snapshots of Voltage Stability Index

After fault 1 \((t=0 \sim 5\text{s})\)

After fault 2 \((t=5 \sim 10\text{s})\)

After fault 3 \((t=10 \sim 15\text{s})\)

After fault 4 \((t=15 \sim 20\text{s})\)

After fault 5 \((t=20 \sim 25\text{s})\)

After fault 6 \((t=25 \sim 30\text{s})\)
Transient Stability vs. Voltage Stability

Transient stability Margin

Voltage stability margin

Abnormal pattern after Fault-5

Security region
Scenario 2: six scheduled line outages
• A security region exists
• Precursor signal: the curve going outside of the region
• The boundary of the region can be studied offline
3D Visualization

Security region

Damping

Transient stability margin

Voltage stability margin
Conclusions

• Precursor signals of cascading do exist
 1. Abnormal dynamic patterns in phase space
 2. Abnormal values (going outside of a security region)
• Vulnerability indices can be used in real-time monitoring
 – Easy to be calculated (by only PMU data)
• Vulnerability indices can be used in offline studies
 – Useful for studying different stability issues in cascading
• A measurement-based monitoring tool
 – A complementary scheme of simulation-based DSA
Q&A

Kai Sun
ksun@epri.com
650-855-2087