

NASPI Work Group Meeting March 23-24,2015 San Francisco, CA

GPS-Spoofed Synchrophasor Data Correction for State Estimation

Xiaoyuan Fan¹, Dongliang Duan¹, and Liang Du² 1. Department of Electrical and Computer Engineering University of Wyoming, Laramie, WY, USA 2. Schlumberger, Sugar Land, TX, USA Email: <u>xfan3@uwyo.edu, dduan@uwyo.edu, ldu3@slb.com</u>

Outline

- Introduction
- Challenges for Synchrophasor Data: GPS Spoofing Attack
- GPS-Spoofed Synchrophasor Data Correction
- Summary and Future Work

Phasor Representation for Power System

Power system signal:

 $v(t) = |V|\cos(2\pi f_0 t + \phi)$

 f_0 : fundamental frequency, 60 Hz in U. S. |V| : voltage amplitude ϕ : voltage phase

Phasor. $\mathbf{V} = |V|e^{j\phi}$

Synchrophasor: Need a common time reference

Time Synchronization for PMU

• PMU will be deployed in a huge geographical area.

- GPS signal is received once per second;
- Time tagging accuracy better than $1\mu s \iff 0.02^\circ$ in phase.

PMU versus SCADA

	SCADA	PMU
measurements	power, voltage, current magnitude	voltage & current <i>phasors,</i> frequency (derivative)
meas. model	non-linear	linear
reporting rate	one every 1-4 sec	30-60/sec
wide-area sync	poor (~1 sec)	precise (~1 µs)

"It's like going from an X-ray to an MRI of the grid," Terry Boston, PJM CEO

A. G. Phadke and J. S. Thorp, *Synchronized Phasor Measurements and their Applications*, Springer, 2008.

PMU Measurement Example

Challenges for PMU

- Only civilian GPS signal available
 - Publicly known, easy to predict
 - Subject to GPS Spoofing Attack (GSA)
- GSA on PMU
 - Field tests from Northrop Grumman Information Systems and University of Texas Radio Navigation Laboratory on Dec. 2012
 - Inexpensive hardware
 - Mobile attack in certain distance (~ hundreds of meters)
 - ➤ No warning for the spoofed data from PMU ⇒ Reliability and security of power system is endangered !!!
- Solution
 - ✓ Spoofed PMU data must be detected, corrected or removed.

Impact of GSA on Synchrophasor Data

- Presence of GSA \implies synchronization is lost
 - Timestamps on these data are compromised
 - Mismatch b/w the measured phasor & the true phasor
 - Equivalent to a phase error on these synchrophasor measurements
- Mathematically,

$$V_{spf} = V_{true} \times e^{j\theta_{spf}}$$
$$I_{spf} = I_{true} \times e^{j\theta_{spf}}$$

where θ_{spf} is the spoofed phase shift from GSA.

Impact of GSA on State Estimation (SE)

Mag.(%)

1.0180

1.3210

1.1834

1.6222

- Example: 4-bus benchmark system
- PMU installed on bus 1 and bus 4
- GSA information: $(4, 0.1\pi)$

Estimated

State

S1

S2

S3

S4

PMU data: $V_1, I_{12}, I_{13}, V_4, I_{42}, I_{43}$

Mag.(%)

0.2909

0.3141

0.1297

0.1491

Pha. (deg.)

0.2168

0.2106

0.4136

0.4232

SE Error, no GSA

Correction vs. Removal?

- GSA can be denoted by (location, spoofed phase shift)
- One PMU has multiple measurements
- Measurements from same GSA location are affected by the same θ_{spf}

6 initial	GSA loca	ition known	GSA location unknown	
measurements	Correction	Removal	Correction	Removal
# of unknown states	4	4	4	4
# of GSA parameter	1	0	2	1
GSA Localization	6>4+1 OK	6>4 ОК	6=4+2 ОК	6>4+1 OK
# of remains for SE	6	6-3=3	6	6-3=3
Conclusion	better	Not applicable	ОК	Not applicable

Conclusion: Correction is preferable for more accurate result.

PMU-based SE Model

• A linear model for static state estimation with synchrophasor data from *p* PMUs installed in power system

where A_i can be obtained from grid structure and transmission line parameters.

• Assume GSA is on the *k*-th PMU with θ_{spf}

$$\boldsymbol{m}_{spf} = \boldsymbol{G} \cdot \boldsymbol{m} = \begin{pmatrix} \boldsymbol{I}_1 & \dots & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \boldsymbol{0} & \ddots & \boldsymbol{0} & \dots & \boldsymbol{0} \\ \vdots & \vdots & \boldsymbol{I}_k e^{j\theta_{spf}} & \vdots & \vdots \\ \boldsymbol{0} & \dots & \boldsymbol{0} & \ddots & \boldsymbol{0} \\ \boldsymbol{0} & \dots & \boldsymbol{0} & \dots & \boldsymbol{I}_p \end{pmatrix} \begin{pmatrix} \boldsymbol{m}_1 \\ \vdots \\ \boldsymbol{m}_k \\ \vdots \\ \boldsymbol{m}_p \end{pmatrix} = \begin{pmatrix} \boldsymbol{m}_1 \\ \vdots \\ \boldsymbol{m}_k e^{j\theta_{spf}} \\ \vdots \\ \boldsymbol{m}_p \end{pmatrix}$$

Intuition for Correction

- Two unknowns for single GSA
 - Location k & Spoofed phase shift θ_{spf}
- (1) If location k is known, only need to find the best $\hat{\theta}_{spf}$ $\hat{\theta}_{spf} = \arg\min_{\theta_{spf}} J(k, \theta_{spf})$
- (2) If both are unknown
 - Enumerate all possible locations in bus index set
 - $i \neq k$, \square adding GSA to another location \square ger J(k,) θ_{spf}
 - i = k, \square identifying the correct location \square aller J(k,) θ_{spf}

- Find the best \hat{k} and $\hat{\theta}_{spf}$

$$(\hat{k}, \hat{\theta}_{\hat{k}, spf}) = \arg\min_{k, \theta_{spf}} J(k, \theta_{spf})$$

Cost Function J(k, θ_{spf})

• Best Linear Unbiased Estimator (BLUE)

$$\hat{s}_{spf} = (A^{\mathcal{H}}C_{e}^{-1}A)^{-1}A^{\mathcal{H}}C_{e}^{-1}m_{spf}$$

• Spoofed SE Correction

$$\hat{m{m}}_{true} = \hat{m{G}}^{\mathcal{H}}m{m}_{spf}$$

• Estimation residual with correction

$$r_{est} = \hat{m}_{true} - A\hat{s}_{true} = [I - A(A^{\mathcal{H}}C_e^{-1}A)^{-1}A^{\mathcal{H}}C_e^{-1}]\hat{G}^{\mathcal{H}}m_{spf}$$

• Cost function $J(k, \theta_{spf})$

$$J(k, \theta_{spf}) = \|\boldsymbol{r}_{est}(k, \theta_{spf})\|_2$$

Residual

Sensitivity Matrix

GPS-spoofed Synchrophasor Data Correction

- Spoofing-Matched (SpM) Algorithm
 - Step 1: Estimate the GSA phase shift $\hat{\theta}_{spf}$

$$\hat{\theta}_{k,spf} = \arg\min_{\theta_{spf} \in [0,2\pi]} \|\boldsymbol{r}_{est}(k,\theta_{spf})\|_2 \,\forall k \in \{0,1,\ldots,p\}$$

- Step 2: Identify the GSA location

$$\hat{k} = \arg\min_{k \in \{0,1,\dots,p\}} \|\boldsymbol{r}_{est}(k, \hat{\theta}_{k,spf})\|_2$$

- Step 3: Correct the spoofed data & recover true state

$$\hat{\boldsymbol{m}}_{true} = \hat{\boldsymbol{G}}^{\mathcal{H}}(\hat{k}, \hat{\theta}_{\hat{k}, spf}) \cdot \boldsymbol{m}_{spf}$$
$$\hat{\boldsymbol{s}}_{true} = (\boldsymbol{A}^{\mathcal{H}} \boldsymbol{C}_{e}^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^{\mathcal{H}} \boldsymbol{C}_{e}^{-1} \hat{\boldsymbol{m}}_{true}$$

GPS-spoofed Synchrophasor Data Correction

- Performance preview for SpM algorithm with grid search
 - Linear with the total number of PMUs
 - Linear with the inverse of grid search precision
 - Constant residual sensitivity matrix

$$\boldsymbol{Y} = \boldsymbol{I} - \boldsymbol{A} (\boldsymbol{A}^{\mathcal{H}} \boldsymbol{C}_{e}^{-1} \boldsymbol{A})^{-1} \boldsymbol{A}^{\mathcal{H}} \boldsymbol{C}_{e}^{-1}$$

- Improved SpM algorithm
 - Better searching technique for Step 1
 - × First order derivative test
 - × Iterative methods
 - ✓ Golden Section search technique
 - Fast convergence
 - High accuracy

Simulation Setup

- IEEE 14-, 30-, 57-bus benchmark systems
- GSA information $(k, \theta_{spf}), \theta_{spf} = rand(1,1) \times 2\pi$
- System SNR: 20 dB
- Golden Search Precision: $\epsilon = 10^{-5}$

# of	Index of	# of	Indices of	GSA
Buses	Scenario	PMUs	Buses with PMUs	location
	1	4	2,6,7,9	7(3rd)
14	2	6	2,4,6,7,9,13	7(4th)
	3	10	1,7,9,10,12,18,24,25,27,28	25(8th)
30			3,4,5,7,10,11,12,17,	
	4	16	19,22,24,25,26,28,29,30	25(12th)
			1,4,6,13,20,22,25,27,29	
	5	17	32,36,39,41,45,47,51,54	41(13th)
57			1,3,4,6,9,12,20,22,24,27,29,	
	6	28	30,32,34,36,38,39,41,43,	41(18th)
			44,45,46,48,51,52,53,54,56	

PMU PLACEMENT PROFILE UNDER DIFFERENT SCENARIOS

Performance Metrics

- Performance of GSA Detection
 - Correctness of location \hat{k} ;
 - CDT: probability of correct detection
 - ➢ WDT: probability of wrong detection
 - Accuracy of $\hat{\theta}_{spf}$
 - \triangleright Bias: $\hat{\theta}_{spf} \theta_{true}$
 - \succ RMSE: $||\hat{\theta}_{spf} \theta_{true}||_2$
- Performance of State Estimation
 - Comparison b/w SpM, WLS, Genie
 - Magnitude /V/ and phase φ of system state
 - Estimation error
 - RMSE: root mean square error

• Location \hat{k} : perfect GSA Phase shift $\hat{\theta}_{spf}$: good

• Location \hat{k} : perfect GSA Phase shift $\hat{\theta}_{spf}$: good

GSA DETECTION PERFORMANCE UNDER DIFFERENT SCENARIOS

Scenario	1	2	3	4	5	6
$p_{\text{CDT}}(\%)$	100	100	100	100	100	100
$p_{\rm WDT}(\%)$	0	0	0	0	0	0
$Bias(\hat{\theta}_{spf})$	0.0226	0.0213	0.0255	0.0240	0.0310	0.0207
$RMSE(\hat{\theta}_{spf})$	0.0266	0.0262	0.0323	0.0309	0.0385	0.0254

- The detection of location is almost perfect;
- The estimation for GSA phase shift is good considering the noise.

SpM has good performance to detect single GSA.

SpM ≈ Genie, much better than WLS.

Performance of State Estimation

RMSE of State Estimation under Different Scenarios

Scenario	SM	WLS	Genie	Improvement	
	Mag.(p.u.) Pha.(π)	Mag.(p.u.) Pha.(π)	Mag.(p.u.) Pha.(π)	Mag.(%) Pha.(%)	
1	0.0307 0.0156	0.4355 0.0851	0.0309 0.0134	92.95 81.66	
2	0.0250 0.0121	0.3250 0.0622	0.0249 0.0110	92.30 80.55	
3	0.0324 0.0158	0.1758 0.0333	0.0324 0.0152	81.57 52.48	
4	0.0188 0.0080	0.1082 0.0163	0.0188 0.0078	82.63 50.57	
5	0.0430 0.0203	0.1400 0.0536	0.0430 0.0196	69.27 62.13	
6	0.0186 0.0081	0.0642 0.0118	0.0186 0.0081	71.06 30.94	

- Improvement by SpM compared with WLS is significant;
- SpM can achieve good performance close to Genie.

SM improves the state estimation under single GSA.

$$Impr. = \left(1 - \frac{RMSE_{SM}}{RMSE_{WLS}}\right) * 100$$

Summary & Future Work

- GSA is an imminent threat to current power grid
- Spoofed PMU data can be corrected instead of removal
- SpM algorithm provides good performance under single GSA
- Potential research areas:
 - Multiple GSA's impact and detection;
 - Anti-GSA strategies, including PMU placement, synchronization protocols.

