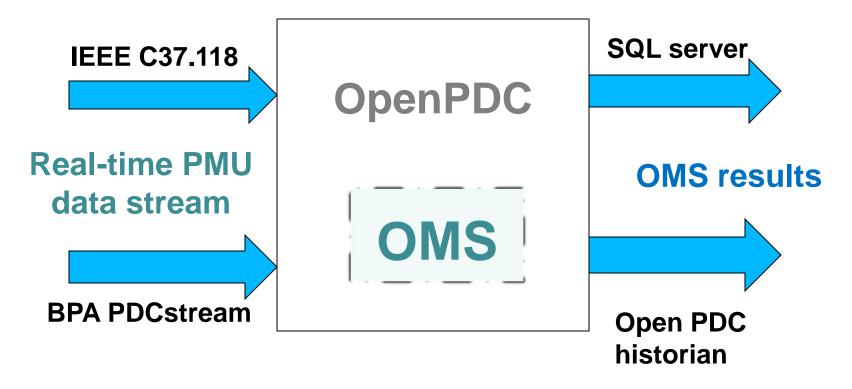


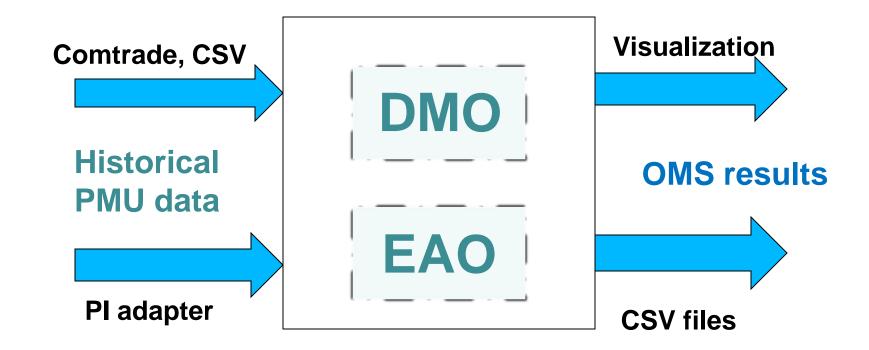
Turbo Oscillation Monitoring for Large-Scale Synchrophasor Data

Hamed Khalilinia Mani V. Venkatasubramanian Washington State University

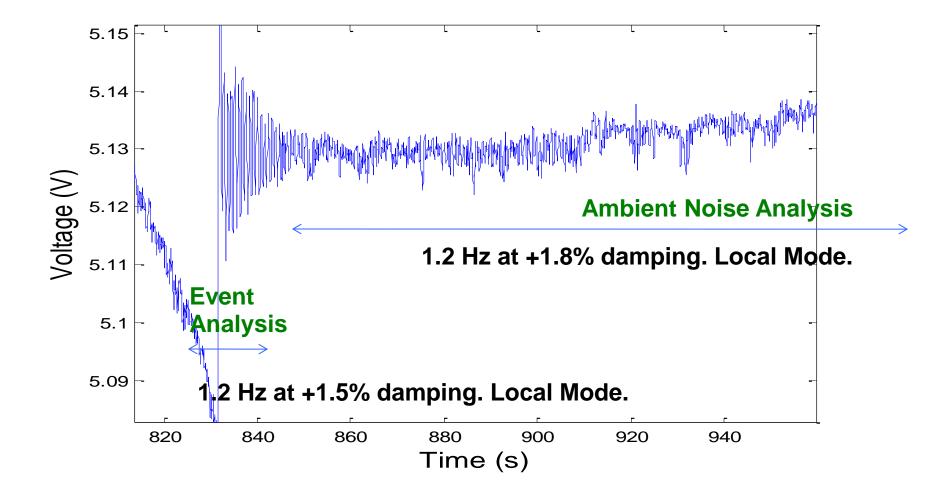
© Washington State University


Project Objectives

- Oscillation Monitoring System for WECC and Entergy
- Monitoring hundreds of PMUs simultaneously
 - Helps pinpoint likely source of oscillations
 - Improves estimation accuracy
- Damping Monitor Engine ambient data analysis
- Event Analysis Engine detection and analysis of ringdowns and oscillations
- Real-time engines and off-line engines



Oscillation Monitoring System


OMS action adapter built into OpenPDC 64 bit version 2.1.

Oscillation Monitoring Off-line

Stand alone oscillation analysis programs for analyzing historical PMU data either from Comtrade/CSV files or directly from PI historian.

Results from Two Engines

Complementary Engines

- Event Analysis Engine (EAE)
 - Multiple algorithms
 - Prony, Matrix Pencil, HTLS, ERA, MFRA, METRA.
 - Aimed at events resulting in sudden changes in damping
- Damping Monitor Engine (DME)
 - Ambient noise based. Continuous. Provides early warning on poorly damped modes.
 - Several algorithms
 - Fast Frequency Domain Decomposition (FFDD), DFDO, Recursive Adaptive Stochastic Subspace Identification (RASSI), DFDD, RFDD, DRSSI, FSSI.

Damping Monitor Engine

- Ambient noise based. Continuous. Provides early warning on poorly damped modes.
- Many multi-dimensional algorithms developed at WSU
- Time-domain algorithms:
 - Stochastic Subspace Identification (SSI-Covariance)
 - Recursive Adaptive Stochastic Subspace Identification (RASSI)
 - Distributed Recursive Stochastic Subspace Identification (DRSSI)
 - Fast Stochastic Subspace Identification (FSSI)
- Frequency-domain algorithms:
 - **Fast Frequency Domain Decomposition (FFDD)**
 - Distributed Frequency Domain Optimization (DFDO)
 - Decentralized Frequency Domain Decomposition (DFDD)

Frequency Domain Decomposition

- Collect and preprocess signals from PMUs
- Power spectrum matrix estimation by Multi-Taper Method
- Apply SVD on the power spectrum matrix
- Apply inverse FFT on largest singular values
- Extract pole frequency and damping ratio
 from exponential form by ringdown analysis
- Can process 100 signals simultaneously in real-time (fast)

Fast Frequency Domain Decomposition (FFDD)

- Collect and preprocess signals from PMUs
- Power spectrum estimation by FFT and Multi-Taper Method
- Apply SVD on the power spectrum
 - Approximate the largest singular value by the trace of the power spectrum matrix (Fast FDD)
- Apply inverse FFT on largest singular values
- Extract pole frequency and damping ratio
 from exponential form by ringdown analysis
- Can process 1000+ signals simultaneously.

Turbo Oscillation Monitoring

- Can process truly large number of signals 1000+ simultaneously in real-time: needed for source location.
- Offline mode: Can get a quick overview of system modal properties by fast analysis of historical data. Can study mode trends.
- An hour of data from 200 PMU signals can be analyzed in less than 2 minutes on a desktop
- Implemented in C# using Intel Math library.
 Multi-threaded. Scalable solutions offered.

FFDD Estimation Results

- Dominant modes are analyzed for each data set four minutes of data updated every ten seconds
- For each mode:
 - Mode frequency
 - Mode damping ratio
 - Mode energy
 - Mode shape
 - Estimation confidence level

Short Demos

Summary

- PMUs enabling technology for online oscillation analysis
- System changing: fast responsive engines needed.
- Oscillation modes: analyze all available signals.
- Mode shape crucial for analysis: simultaneous processing of hundreds of PMU signals needed
- Scalable solutions needed.