Hierarchical Two-Level Voltage Controller using Synchrophasors for Southern California Edison

Mani V. Venkatasubramanian Javier Guerrero, Jingdong Su Hong Chun, Xun Zhang

Washington State University Pullman WA Farrokh Habibi-Ashrafi Armando Salazar Backer Abu-Jaradeh

Southern California Edison Los Angeles CA

Controller Structure

An EDISON INTERNATIONAL® Company

Typical SCE Bulk Substation

SLVC Controller Objectives

- Substation Local Voltage Controller (SLVC)
 - Maintain substation bus voltages by switching local VAR devices – transformer banks, capacitor banks and reactor banks
 - Maintain VAR output and VAR flow constraints
 - Minimize switching of VAR devices
 - Alerts and Alarms when nearing voltage insecurity
 - Lessens burden on substation operators

SLVC Controller Objectives

- Substation Local Voltage Controller (SLVC)
 - Switching decisions mostly based on local PMU measurements – bus voltages, VAR flows, device status
 - Supervisory guidance from central coordinator voltage schedules, SLVC enable/disable
 - Closed-loop monitoring of system conditions corrective actions whenever needed
 - Adapts to varying system conditions

SCVC Central Coordinator

An EDISON INTERNATIONAL® Company

SCVC Controller Objectives

Supervisory Central Voltage Coordinator (SCVC)

- Coordinate switching of substation SLVC controllers
 - Enable specific substation SLVCs as needed
 - Disable other substations to prevent hunting
- Optimize voltage profile towards minimizing VAR losses – convey schedules to substation SLVCs
- Optimal management of VAR resources
- Alerts and Alarms when nearing voltage insecurity

SLVC Controller

Substation Controller Modes

• Slave Mode (Substation SVC in service)

- Maintain 115 kV and 230 kV bus voltages by switching local VAR devices – transformer banks, capacitor banks and reactor banks
- Maintain SVC VAR output within limits and other VAR flow constraints

• Master Mode (SVC out of service)

- Maintain 115 kV, 230 kV and 500 kV bus voltages by switching local VAR devices – transformer banks, capacitor and reactor banks
- Maintain VAR flow constraints

• Automatic switching between Master and Slave Modes using SVC status. Manual override optional.

SCVC Supervisory Coordination

- Fast real-time coordination of substation SLVC controllers
- Discrete optimization based on voltage schedules and PMU measurements
- Decide which substations to enable and which ones to disable
- Closed-loop monitoring and corrections

SCVC Optimal Management

- Optimization of substation voltage schedules
- Reduce VAR losses
- Optimal power-flow like
- Mostly based on PMU measurements
- Possibly several times a day

SLVC RTDS Test Set-up at SCE

Panel Interface Cards

RTDC Test Results Example

m:U/D: m Taps Up/Down @ all 2 AA LTCs

R:One of 6 45 MVAr reactor banks @ 13.8 kV

Two-Level Controller Summary

- Automatic management of VAR resources at substations
- Design mostly based on local PMU measurements
- Discrete controller design Slave and Master modes
- Predict switching effects and find optimal actions after including control constraints
- Closed-loop monitoring after switching. Take corrective actions as needed.
- Adapts to system conditions. Robust methodology.
- Gives Alerts and Alarms to operators if unusual
- Phased implementation planned.

