#### Towards More Effective & Resilient Power Apps Exploiting Better Comms. & Computation

#### Prof. Dave Bakken School of Electrical Engineering and Computer Science Washington State University Pullman, Washington, USA

NASPI Work Group Meeting San Mateo, CA March 24, 2015





## The Issue

- In the last 30 years the state of the art and practice has increased a LOT in
  - Computer networking
  - Distributed computing (esp. middleware & cloud)
- The way many power researchers write their programs has not leveraged these advances
- Outline of the talk
  - Summarize what the state of the art is
  - Pose questions power researchers can ask themselves to better utilize communications and computation





## Context

- IANAPP (power person): Computer Scientist
  - Core background: fault-tolerant distributed computing
  - Research lab experience (BBN) with widearea middleware with QoS, resilience, security, .... for DARPA/military
  - Working with Anjan Bose since 1999 on
    wide-area data delivery issues appropriate
    for RAS and closed-loop applications
    - GridStat (1999-present)
    - GridSim (2009-2014)

WASHINGTON STATE

• GridCloud (2012-present)

# S M A R T G R I D S

Clouds, Communications, Open Source, and Automation



May, 2014 | ISBN: 1482206110



## **Comms Baseline: You Can Assume**

- Data delivery over WAN can be (with GridStat etc):
  - Very fast: less than ~1 msec added to the underlying network layers across an entire grid
  - Very available: think in terms of up to 5+ 9s (multiple redundant paths, each with the low latency guarantees)
    - Even in the presence of failures!
  - Very cyber-secure: for long-lived embedded devices and won't add too much to the low latencies
    - E.g., RSA adds >>60 msec so not for RAS or closed-loop
    - Shared keys (61850-90-5): subscriber can spoof publisher ☺
    - GridStat solution not vulnerable and only adds ~1msec
  - Tightly managed for very strong guarantees (MPLS)
- Adaptive: can change pre-computed subscriptions
  ~INSTANTLY (and dynamic requests FAST)
  WASHINGTON STATE



## **Questions to Ask Yourself**

- So how can power researchers exploit this better communications infrastructure?
- What rate and latency and data availability does my power app <u>really</u> need for remote data?
  - Why fundamentally does it need that?
  - How sensitive is it to occasional longer delays, periodic drops (maybe a few in a row), or data blackouts for longer periods of time?
- Can I formulate and test hypotheses for the above?





## **Beyond Steady-State-Only Thinking**

- Previous is just for steady state: different in some contingency/mode situations?
- What extra data feeds (or higher rates etc) could I use in a contingency/mode (could get in << 1sec)</li>
- How important is my app <u>in that given</u> <u>contingency/mode, compared to other apps?</u>
  - E.g., simple "importance" number [0,10]
  - How much worse QoS+ (latency, rate, availability) can I live with in steady state and in given contingencies?
    - But would **still get strong guarantees** at that lower quality
    - How much benefit do different levels really give me?
- Can I program my app to run at different rates, or is there a fundamental reason it has to run at one?
   WASHINGTON STATE



### **Bad Data**

- How vulnerable is my power app to bad data?
  - State estimation obviously has handed for many decades
- But
  - How much bad data
  - Does how much bad
  - In what (power) circumstances?
- E.g. can I specify assumptions about bad data?
  - Number: absolute or (better) as a function of the problem size (state/configuration/#PMUs/etc)
  - Location and timing: randomly distributed or worst case?
  - Error degree: randomly off (what probability distribution) or worst case (from an adversary)?





### **Bad Manners**

- How vulnerable is my power app or RAS scheme or stability assumptions to worst-case malicious behavior?
- E.g. not just false data (which may be able to be detected) but taking over command of a relay or other devices
  - How many of these, and of what kind, could cause problems?
- Thinking cyber-physical here
  - What are some worst case combinations of a physical attack (rifle, chaff, modifying sensors, ..) and a cyber attack (colluding customer meters, taking over relays, DDOS to throttle delivery of sensor data and commands,
  - And worst case under what situations?





## Bad Manners (cont.)

- "The event I fear most is a physical attack in a successful cyber-attack in conjunction with responders' 911 system or on the power grid,"
  - Ronald Dick, director of the FBI's National Infrastructure Protection Center, Washington Post, Front Page Article, June 27 2002, (<u>emphasis</u> added)





## **A Cloudy Forecast**

- What could I do with cloud computing, assuming it is made mission critical, i.e.:
  - Keeps same fast throughput
  - Does not allow deliberate "inconsistencies"
    - e.g., a replica does a state update never received by others
  - Is much more predictable with CPU perf., ramp-up time, ...
  - (BTW, ARPA-E GridCloud proj. w/Cornell+WSU doing for >2 years)
    - Pilot starting with ISO-New England, likely others soon
  - Not all CPUs in datacenter, some (managed) in substations... (Cisco Fog?)
- How could I use
  - Tens/Hundreds of processors in steady state
  - >>Thousands when approaching/reaching contingencies
  - Data from ALL participants in a grid enabled quickly when approaching a crisis





## **CIP-Managed Compute+Comms+Security**

- Computations + communications + security can be
  - Mission critical to power grid specs
    - Closed-loop WAN app requirements WAY harder than air traffic control, railways, military, ...
  - Changed rapidly in a coordinated manner
    - Providing app developers much higher-level building blocks
  - Managed in a network operations center 24x7
    - Much like a power control center!!!
    - Needed if power grid stability really does depend on comms and computation and cyber-security
    - No more hard-coded and unmonitored comms infrastructures causing headaches when glitches occur!





## Sources of Info (1)

- D. Bakken, A. Bose, C. Hauser, D. Whitehead, and G. Zweigle. "Smart Generation and Transmission with Coherent, Real-Time Data. *Proceedings of the IEEE*, 99(6), June 2011.
- David E. Bakken, Richard E. Schantz, and Richard D. Tucker. "Smart Grid Communications: QoS Stovepipes or QoS Interoperability", in *Proceedings of Grid-Interop 2009*, GridWise Architecture Council, Denver, Colorado, November 17-19, 2009. Online

http://gridstat.net/publications/TR-GS-013.pdf.

Best Paper Award for "Connectivity" track. This is the official communications/interoperability meeting for the pseudo-official "smart grid" community in the USA, namely DoE/GridWise and NIST/SmartGrid.
 WASHINGTON STATE UNIVERSITY

## Sources of Info (2)

- <u>ToSG-Workshop.org</u>
- Chapters in D. Bakken and K. Iniewski, ed. Smart Grids: Clouds, Communications, Open Source, and Automation, CRC Press, May 2014, ISBN 9781482206111.
  - G. Zweigle, "Emerging Wide-Area Power Applications with Mission Critical Data Delivery Requirements".
  - D. Bakken *et. al.* "GridStat: High Availability, Low Latency and Adaptive Sensor Data Delivery for Smart Generation and Transmission."
  - T. Gamage *et. al.* "Power Application Possibilities with Mission Critical Cloud Computing."



