PMU Signal Validation – Needs and Ongoing Efforts

Zea Flores - WISP Power Systems Engineer

WECC RC
October 22, 2012
NASPI
Today’s Objective

• Discuss the need for PMU data validation;
• Provide some real-life examples of bad data and what is being done to make it usable in operations; and
• Describe methods being used to measure signal quality
Quality Data Need

• Data must be reliable and available prior to operating staff trust and accept
• Applications are dependent on “good data”
 o Oscillation Detection
 o Mode Meter
 o Voltage Stability Analysis
 o State Estimator
WECC RC Phasors

- RC collaborates with entities to set-up
- Nearly 1,000 phasors ready for evaluation
 - From 15 entities
- RC analyzes each phasor
State Estimator Example

- Angle integration provides a much more consistent angle solution
State Estimator Example

- Angle measurements need application level validation through reasonability checks
Systems in PMU set-up

- There are five general types of systems involved in data transfer:
 - Measurement units (PMUs);
 - Signal collection units (PDCs);
 - PMU data analysis and display (VSA, WAV, PP, eTV);
 - Network infrastructure (WAN); and
 - Data archive and configuration (PI, Registry).
Data Error Examples - Spikes
Data Error Examples – Missing Frames
Data Error Examples – Angle Error
Collaborations

• The setup process involves these roles:
 o Entity participant users;
 o Modeling engineers;
 o Application Support engineers (ASE);
 o EMS support engineers; and
 o Harris Corporation network engineers (WAN connectivity).
Phasor Validation

• First validation test includes:
 o Naming Convention
 o Latency
 o Missing Frames
 o Positive Sequence
 o No analog or digital signals
 o Flat line
 o Spikes
Phasor Validation

• Reasonability Check
 o Phasors are polar
 o Voltages are volts
 o Currents are amps

• Second validation test includes:
 o Names align with actual equipment being metered
 o Within a tolerance of SCADA or SE values
 o Angles align with interconnection
SCADA vs PMU
Data Validation Tools

- **PhasorPoint**

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>%Available</th>
<th>%GPS Locked</th>
<th>%Data Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>34401W017HALLEN___06</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>34283W030CRANBROK__01</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>34442W030DUNSMUIR__01</td>
<td>100</td>
<td>100</td>
<td>99.998</td>
<td></td>
</tr>
<tr>
<td>34284W030INGLEDOW__01</td>
<td>100</td>
<td>100</td>
<td>99.998</td>
<td></td>
</tr>
<tr>
<td>34286W030MICA_______01</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>34440W030MINETTE____01</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34287W030NICOLA____01</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>34288W030REVELSTK__01</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
PDC Data Dashboard

-Disconnected PDCs
-Flatlined signals
-PMUs in Error State
PDC Data Dashboard

Individual PMU details include:
- Manufacturer
- Signals
- Owner
- Substation
PDC Data Dashboard

- Export csv

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Station Name</th>
<th>PMU Name</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPA</td>
<td>ALLSTON</td>
<td>W001ALLSTON_01</td>
<td>A500FREQ_1R</td>
</tr>
<tr>
<td>TSgt</td>
<td>CRGCU</td>
<td>W010CRGCU_01</td>
<td>A345FREQ_1R</td>
</tr>
<tr>
<td>TSgt</td>
<td>CRGCU</td>
<td>W010CRGCU_01</td>
<td>A345FREQ_1F</td>
</tr>
<tr>
<td>TSgt</td>
<td>CRGCU</td>
<td>W010CRGCU_01</td>
<td>L345AULT_1P</td>
</tr>
<tr>
<td>TSgt</td>
<td>CRGCU</td>
<td>W010CRGCU_01</td>
<td>L345AULT_1VP</td>
</tr>
<tr>
<td>NVE</td>
<td>HALLEN</td>
<td>W017HALLEN_01</td>
<td>A500FREQ_1R</td>
</tr>
<tr>
<td>BCH</td>
<td>CRANBROK</td>
<td>W030CRANBROK_01</td>
<td>A500FREQ_1R</td>
</tr>
<tr>
<td>IPCO</td>
<td>BOISEBCH</td>
<td>W034BOISEBCH_01</td>
<td>A230FREQ_1F</td>
</tr>
<tr>
<td>IPCO</td>
<td>BOISEBCH</td>
<td>W034BOISEBCH_01</td>
<td>A230FREQ_1F</td>
</tr>
<tr>
<td>IPCO</td>
<td>BOISEBCH</td>
<td>W034BOISEBCH_01</td>
<td>B230BUS_1VP</td>
</tr>
</tbody>
</table>

10/9/2013 11:44:03 PM - [Error] - W001JOHN_DAY_03.B500EAST_1VP could not be found in the registry
10/9/2013 11:44:03 PM - [Error] - W001JOHN_DAY_03.B500WEST_1VP could not be found in the registry
10/9/2013 11:44:04 PM - [Error] - W001MALIN_03.L500CAPTjACK_1IP could not be found in the registry
10/9/2013 11:44:04 PM - [Error] - W001MARION_03.L500ASHE_1IP could not be found in the registry
10/9/2013 11:44:05 PM - [Error] - W020NICOLA_01.L500MICA_1IP could not be found in the registry
Excel and PI

- Calculates statistics only on application signals
 - Phase Angle Difference monitoring, Mode Meter, and VSA

<table>
<thead>
<tr>
<th>Substation</th>
<th>Bad Points</th>
<th>% Bad Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>AULT</td>
<td>457</td>
<td>5.3</td>
</tr>
<tr>
<td>COLSTRIP</td>
<td>3748</td>
<td>43.4</td>
</tr>
<tr>
<td>CUSTER</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>HALLEN</td>
<td>64</td>
<td>0.7</td>
</tr>
<tr>
<td>HASSYYAM</td>
<td>783</td>
<td>9.1</td>
</tr>
<tr>
<td>INTMTN</td>
<td>46</td>
<td>0.5</td>
</tr>
<tr>
<td>LANGDON</td>
<td>3534</td>
<td>40.9</td>
</tr>
<tr>
<td>MALIN</td>
<td>45</td>
<td>0.5</td>
</tr>
<tr>
<td>MIDPOINT</td>
<td>48</td>
<td>0.6</td>
</tr>
<tr>
<td>MIGUEL</td>
<td>45</td>
<td>0.5</td>
</tr>
</tbody>
</table>
VBA and PI with Excel Interface

- Utilizes VBA to run multiple loops through both Phasor and EMS PI historians
Challenges

• The massive amount of data and the collaboration involved requires new tools and processes

• Send results to entities
 o Verify results on their end
 o Work together to correct issues

• What is “good data”?
 o What values should be used for tolerances?
Questions?

Zea Flores
zflores@wecc.biz