

Implementation of a Security-Dependability **Adaptive Voting Scheme**

Energy Efficiency 8 Renewable Energy

Ryan Quint - quintr@vt.edu Noah Badayos - nbadayos@vt.edu David Mazur - dmazur@vt.edu

Feb 29, 2012

Data Mining Theory to Application

Adaptive Relaying: The ability to modify, update, or change the settings of a protection scheme.

Application of Voting Scheme

- What is system state?
 - Safe
 - Stressed
- "Stressed"?
 - Increase Security
 - Relays Vote
- "Safe"?
 - Increase Dependability
 - Normal tripping of CB

Connection of openPDC and SQL

CPU

Invent the Future

Connection of SQL and PAC

Automation Controller Voting

8

- Asynchronous
- Ladder Logic programming
- Software updates to relay logic, i.e. voting
- Centralized stamping of data
 - Relay trips
 - Output

Name	Value	+
Breaker_Full_UTC		DT#1969-12-31-19:00:00.000000(GMT-05:00)
R1_Full_UTC		DT#1969-12-31-19:00:00.000000(GMT-05:00)
R2_Full_UTC		DT#1969-12-31-19:00:00.000000(GMT-05:00)
R3_Full_UTC		DT#1969-12-31-19:00:00.000000(GMT-05:00)

PAC Performance

Added Delay Times [ms]

9

PAC Delay Non-Voting [ms]			
Mean		1.187324	
Median		1.101	
Mode		1	
Standard	Deviation	0.358331	
Minimum	า	0.32	
Maximun	n	2.199	

PAC Delay Voting [ms]				
Mean	1.9561			
Median	2.01925			
Mode	2.2			
Standard Deviation	0.457734			
Minimum	0.875			
Maximum	3.1755			

Conclusions

- Decision Trees implemented in PDC
 - Hardware: SEL-3378
 - Software: openPDC/SQL Server
- Voting Logic implemented
 - Master-Slave relay configuration
 - No added delay, relay config changed
 - Automation controller voting device
 - \leq 3.18 ms PAC delay, no relay changes

California Institute for Energy and Environment

References

- [1] Bernabeu, E., *Methodology for a Security-Dependability Adaptive Protection Scheme based on Data Mining*, in ECE, 2009, Virginia Polytechnic Institute and State University: Blacksburg.
- [2] Horowitz, S.H., and A.G. Phadke, Power System Relaying, 3rd ed., Chichester, England: Wiley/Research Studies , 2008.
- [3] Schweitzer Engineering Laboratories, <u>http://www.selinc.com</u>.
- [4] openPDC, <u>http://openpdc.codeplex.com/</u>.
- [5] Microsoft Corporation, Microsoft SQL Server, 2011, <u>http://www.microsoft.com/sqlserver/en/us/default.aspx</u>.
- [6] Rockwell Automation, ControlLogix 1756 System, http://www.ab.com/en/epub/catalogs/12762/2181376/2416247/360807/360809/.
- [7] Thomas, M.K., Implementation of the Security-Dependability Adaptive Voting Scheme, in ECE, 2011, Virginia Polytechnic Institute and State University: Blacksburg

