Development of A Comprehensive Software Suite for Stability Monitoring and Analysis Based on Synchrophasor Measurement (DOE-OE0000700)

Jian Ma (PI)
Burns & McDonnell

Clifton Black (Co-PI)
Southern Company

Mani Venkatasubramanian
Washington State University

NASPI Meeting
March 23-24, 2015
San Mateo, California
Acknowledgment: “This material is based upon work supported by the Department of Energy under Award Number DE-OE0000700.”

Disclaimer: “This material was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Burns & McDonnell Introduction

► Founded in 1898
► A full-service engineering, architecture, construction, environmental and consulting solutions firm
► Headquartered in Kansas City, Missouri
► 5000+ full-time employee-owners
► 100% employee-owned since 1986
► 39 offices around the world
► **Business & Technology Services (BTS)**

► BTS Resources
 - Professional engineers
 - EEs, MEs, CEs, IEs
 - Business consultants
 - Finance, economics, MBA
 - Information management experts
 - Computer programmers
 - Security consultants
 - Certified Protection Professionals (CPP)
 - Physical Security Professionals (PSP)
 - Certified Information Systems Security Professionals (CISSP)

► BTS Consulting Services
 - Transmission & Distribution
 - Utility Operations
 - Due Diligence
 - Renewables Integration
 - Smart Grid
 - Information Technology
 - Physical Security
 - Critical Infrastructure Protection
Project Overview

- Project Title: Development of A Comprehensive Software Suite for Stability Monitoring and Analysis Based on Synchrophasor Measurement
- DOE Award #: DOE-OE0000700
- In response to “DOE FOA-0000970 - Pre-Commercial Synchrophasor Research and Demonstration”
- Project Duration 24 months (10/1/2014 - 9/30/2016)
- DOE Funds: $1,458,181
- Recipient cost share: $1,541,936
Project Objectives

► Project Objectives
• Advance the pre-commercial development and deployment of synchrophasor-based stability monitoring applications to improve Southern Company’s near real-time stability monitoring and analysis in its control centers.
• Develop training materials, operating manuals, and core technology to enhance the reliability of bulk power system operations and planning.

► Key Activities
• Develop a production level comprehensive software suite (named Grid Stability Awareness System - GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement
• Deploy the software suite to one of Southern Company's control centers by the end of the project
• Establish relevant operating guidelines, training materials, training sessions for grid operators and engineers
Project Benefit Opportunities

- Improve:
 - Oscillation detection
 - Voltage stability monitoring
 - Transient instability prediction
- Enhance situational awareness of grid operators
- Progress operating standards for synchrophasor technology
Project Team Members

► Burns & McDonnell – Grant Recipient, software development and deployment
 • Manage project budget and schedule, and coordinate all activities among all team members and subcontractors
 • Design, develop, test and deploy the software suite in an operating environment
 • Develop training materials for grid operators

► Southern Company - Software demonstration host
 • Host the demonstration of the software suite
 • Work with software development and deployment team to collect requirements and operator feedback
 • Develop relevant operating guidelines

► Washington State University - Technology provider
 • Develop and provide executable analytical engines
 • Improve on the methodologies, algorithms, and performance of the analytical engines
 • Assist in the development of training materials

► Grid Protection Alliance - Data layer product consultant
 • Provide technical support for using openPDC
 • Coordinate in the development of data pre-processing modules
Overview of System Architecture

► Grid Stability Awareness System (GSAS)
Key Modules of GSAS

► Analytical Engines
 • **Event Analysis Engine** – Detect events resulting in sudden changes in damping. Use multiple algorithms and rule base.
 • **Damping Monitoring Engine** - Monitor synchrophasor data in real-time to detect growing or poorly damped oscillations in the early stages of an event.
 • **Voltage Stability Monitoring Engine** - Indicate voltage stability stress, estimates voltage stability margin for a large area of the system.
 • **Transient Stability Monitoring Engine** - Detect transient events, transient instability trends, and fast separation of phase angles among the critical areas automatically.

► Graphic User Interface (GUI)
 • **Visualization** - Visualize real-time synchrophasor data, analytical outputs (including both static information and time-series data), etc.
 • **Human-Machine Interaction (HMI)** - Show warning messages, perform historical event and data analysis, etc.
 • **Geographic Information System (GIS)** - Show topology of high voltage transmission network, and PMU and event location information, etc.

► Data Processing
 • **Data Pre-Processing** - Detect and processes bad or missing data in a real-time mode.
 • **Data Store** - Archive synchrophasor data before and after an event’s occurrence.
Iterative Development Approach

- **Traditional Waterfall Process**
 - No working software is produced until late in the product life cycle
 - Difficult to implement user change requests
 - Labor and time intensive

- **Agile Development Process**
 - Iterative and incremental development
 - Develop/deliver incremental executable releases of the solution with each iteration
 - Receive timely feedback from users
 - Clearly define requirements and decrease the number of user change requests
Project Progress

Project Tasks

<table>
<thead>
<tr>
<th>#</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>Project Management & Planning</td>
</tr>
<tr>
<td>Task 2</td>
<td>Define Software Suite Roadmap and Plans for Development, Deployment & Evaluation of Performance</td>
</tr>
<tr>
<td>Task 3</td>
<td>Develop and Refine Analytical Tools (Engines)</td>
</tr>
<tr>
<td>Task 4</td>
<td>Software Suite Development</td>
</tr>
<tr>
<td>Task 5</td>
<td>Software Suite Deployment</td>
</tr>
<tr>
<td>Task 6</td>
<td>Develop Training Materials and Operating Guidelines</td>
</tr>
</tbody>
</table>

Progress (as of March, 2015)

<table>
<thead>
<tr>
<th>Milestones</th>
<th>Estimated Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Kick-off meeting at Southern Company</td>
<td>Complete</td>
</tr>
<tr>
<td>An on-site interview meeting at Southern Company</td>
<td>Complete</td>
</tr>
<tr>
<td>Draft software requirement specifications</td>
<td>Complete</td>
</tr>
<tr>
<td>Define software suite roadmap and plans for development, deployment & evaluation of performance</td>
<td>80% Complete</td>
</tr>
<tr>
<td>Develop and refine analytical tools (engines)</td>
<td>On Going</td>
</tr>
</tbody>
</table>
Southern Company – An Overview

- Located in South East, US

<table>
<thead>
<tr>
<th>KEY STATISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating Capacity in MW</td>
<td>45,000</td>
</tr>
<tr>
<td>Millions of Customers served</td>
<td>4.4</td>
</tr>
<tr>
<td>Miles of Transmission lines</td>
<td>27,000</td>
</tr>
<tr>
<td>Number of Substations</td>
<td>3,700 (Trans - 500+)</td>
</tr>
</tbody>
</table>
| Generation Mix | Natural Gas - 42%
 | Coal - 38%
 | Nuclear - 16%
 | Hydro - 4% |
| Area served | 4 States in SE |
Southern Company’s Architecture

- PMUs, PDCs and Data Archiving

17 PMUs

- PMU
- PDC

Locations:
- Birmingham
- Alabama
- Mississippi
- Georgia
- Florida
Sample Synchrophasor Activities

- Post Event Analysis & Model Validation

- Distributed State Estimator, Generator Parameter Estimation & Stability Monitoring

- Assessment of RTDMS – Wide-Area Situational Awareness Tool

- Support ongoing research with other project partners like EPRI & CEATI
Utility Project Member

► Software Demonstration Host
► Cross Functional Project Team: Research, Transmission Planning, Grid Operations, Energy Management Systems (EMS) & Information Technology
► Work with software development & deployment teams on integration requirements & operator feedback
► Work with project team on relevant operating guidelines and training materials
Real-Time Security Monitors @ WSU

PMUs & PDC

Oscillation Monitoring System

TVA, Entergy, Idaho Power

Voltage Stability Monitor

Entergy, Idaho Power

Angle Stability Monitor

System Security Status

Real-time Display & Control

PMU Real-time data
Oscillation Monitors

► Event Analysis Engine (EAE)
 • Multiple algorithms and rule base
 • Prony, Matrix Pencil, HTLS, and ERA
 • Aimed at events resulting in sudden changes in damping

► Damping Monitor Engine (DME)
 • Ambient noise based. Continuous. Provides early warning on poorly damped modes.
 • Frequency Domain Decomposition (FDD)
Voltage Stability Monitor

\[\Gamma_i = \frac{\partial Q_i}{\partial V_i} = \Sigma \frac{\partial Q_{ij}}{\partial V_i} \]

- \(\Gamma_i \) is the slope of QV curve at Bus i
- \(\Gamma_i \) is small near static voltage stability limit
- \(\Gamma_i \) directly estimated from ambient PMU data
Angle Stability Monitor

Monitor the phase angles with respect to system center.

Area 1 accelerating
Area 2 decelerating

Excess Generation
Excess Load

Area 1 p Area 2