Synchrophasor-Based Power System Control in Central America

Greg Zweigle

February 20, 2013

Schweitzer Engineering Laboratories, Inc.
Wide-Area Protection and Control Scheme Maintains Central America’s Power System Stability

WPRC – October, 2012

José Vicente Espinoza
AMM-Guatemala

Armando Guzmán, Fernando Calero,
Mangapathirao V. Mynam, and Eduardo Palma
Schweitzer Engineering Laboratories, Inc.
230 kV Backbone Connects Countries From Guatemala to Panama

- Mexico
- Guatemala
- El Salvador
- Honduras
- Nicaragua
- Costa Rica
- Panama

Key Points:
- Tapachula
- Los Brillantes
- Aguacapa
- Moyuta
- Ahuachapan
- Agua Caliente
- Sandino
- Ticuantepe
- Cañas
- Rio Claro
- Veladero
Guatemala Wheels Power From Mexico to Central America

Tapachula

THP

Los Brillantes
LBR

Moyuta
MOY

Aguacapa
AGU

Ahuachapan
AHUA

El Salvador

Belize

Guatemala

Mexico

Honduras

Schweitzer Engineering Laboratories
Example Oscillations

![Graph showing oscillations in real power over time.](image-url)
Unstable Oscillation Separates Guatemala From Rest of Central America

![Graph showing real power over time on December 27, 2011]
Synchrophasor Technology in Guatemala

- 2008 – AMM identified synchronized measurements
- 2011 – AMM implemented system of synchrophasors
- 2012 – AMM enabled modal analysis scheme
Synchrophasor System Details

- 23 PMUs
- 30 samples per second
- Software PDC at control center
- Synchrophasor processing units (SPUs)
- System visualization and analytics
- Wide-area control
- Leased communications network
WAPS Architecture

- Client 1
- Client 2
- Client N

- PDC and Archiving
- Online SPU
- Offline SPU

- Control Center
- Stream 1
- Stream 2

- 2 GB/day

- Wide-Area Ethernet Provider

- Substations
 - PMCU
 - GPS Clock

- Stream 1
- Stream 2
PMCU

Schweitzer Engineering Laboratories

PMCU

Fast IEC 61131 Logic Engine

Online SPU

IEEE C37.118 Stream

Embedded Command

Wide-Area Ethernet Provider

PMCU

Schweitzer Engineering Laboratories
Synchrophasors Complement Traditional SCADA
Another Synchrophasor Display View
Supplementary Control Scheme (SCS) Trips Interconnection to El Salvador
Scheme 1 – Synchronized Power

![Graph showing synchronized power with three power levels: P_AGU, P_MOY, and P_TOT.](image-url)
Synchronized Power Levels

<table>
<thead>
<tr>
<th>Total Power (AGU+MOY)</th>
<th>Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1200</td>
</tr>
<tr>
<td>245</td>
<td>600</td>
</tr>
<tr>
<td>297</td>
<td>300</td>
</tr>
</tbody>
</table>

Not possible with 4 second asynchronous SCADA rate
Scheme 2 – Modal Analysis

- Central American interconnection shows possible 0.17 Hz unstable mode
- 20-second observation window
- 2 bands are defined
 - 0.1 to 0.3 Hz unstable band
 - 0.5 to 0.9 Hz steady-state oscillations
Real-Time Modal Analysis Detects Unstable Oscillations

PMCU01 • • • PMCU20

Time-Alignment and Command Server

Gateway

Phasor and Frequency Measurements

PMCU01 • • • PMCU20

Modal Analysis

Real-Time Engine

Power Calculator

Alarm and Remedial Action

Modes

MICL

User Configuration

Local PMCU

IEEE C37.118 Client
If SNR > SNR_{THRE}
Identify Mode
0.1 Hz < f_m < 0.3 Hz

A_m(k)
ζ_m(k)
A_m(k-1)
ζ_m(k-1)
A_m(k-2)
ζ_m(k-2)

A_m(k) > A_m(k-1) > A_m(k-2) > A_{thre}
ζ(k) < ζ(k-1) < ζ(k-2) < ζ_{thre}

Activate Alarms and Trips

Signal-to-Noise Ratio (SNR)
Mode Frequency (f_m)
Mode Amplitude (ζ_m)
Mode Damping Ratio (A_m)
Normal Operational Experience

![Graph showing real power (MW) over time (s)].

- **P_{AGU}**
- **P_{TOT}**
- **P_{MOY}**
MA Scheme Mitigates Unstable Oscillation – July 28, 2012

- MA scheme enabled in mid-June 2012
- Unstable mode shows after synchronizing two parts of Central American power system
Event Happens After Synchronization

- Mexico
- Guatemala
- Honduras
- Nicaragua
- Costa Rica
- Panama

Cities:
- Tapachula
- Los Brillantes
- Aguacapa
- Moyuta
- Ahuachapán
- Agua Caliente
- Sandino
- Ticuantepe
- Cañas
- Rio Claro
- Veladero

Schweitzer Engineering Laboratories
MA Scheme Mitigates Unstable Oscillation – July 28, 2012
Synchrophasor-Based Control Successfully Stabilizes System
Guatemala Remains Stable

- Guatemala reaches new steady state
- Mexican power system largely contributes
Wide-Area Visualization, Analysis, and Control Summary

- Synchronized power measurements
- Real-time modal analysis
- System visualization displays
- Archived data analytics
- Operational experience
Questions?