SDG&E'S EXPERIENCES IN ENGINEERING ANALYSIS USING SYNCHROPHASORS

Tariq Rahman, Hassan Ghoudjehbaklou San Diego Gas & Electric Co.

Armando Guzman, Saurabh Shah, Kamal Garg Schweitzer Engineering Laboratories, Inc.

Copyright SDG&E and SEL 2014

INTRODUCTION

- System overview
- PMU in Service & Challenges
- Current Applications
- Future Applications
- Conclusion

SDG&E TRANSMISSION SYSTEM

- Subsidiary of Sempra Energy
- Regulated public utility
- Provide safe and reliable energy service to 3.4 million consumers
 - 1.4 million electric meters
 - 800,000 natural gas meters
- 4,100 square mile service territory in San Diego and southern Orange Counties (25 cities)

- 1,800 miles of electric transmission lines and 21,600 miles of electric distribution lines
- Two compressor stations, 160 miles of natural gas transmission pipelines, 8,100 miles of distribution pipelines and 6,200 miles of service lines
- 4,500 employees

SDG&E TRANSMISSION SYSTEM INTERCONNECTIONS

SDG&E PMU MAP

.

Copyright SDG&E and SEL 2014

```
A Sempra Energy utility
```

SYNCHROPHASOR ARCHITECTURE

EXAMPLE 1 - MONITOR PHASE ANGLE TO CLOSE LINE & REMOTE END 500KV LINES

- TL50001 Line Closing
- TL50001 Line Manual Trip
- This is also applied for TL50002
 SDGE APS Tie Line Closing

Example 1 50001 LINE CLOSING

Sempra Energy utility

Copyright SDG&E and SEL 2014

Steps in model validation:

(This is based on the methodology proposed by Dmitry Koserev and Steve Yang from BPA)

- Select a disturbance of significant magnitude
- Extract the measured data from PI database for Voltage, Frequency, Active Power, and Reactive Power at the point of interconnection
- Create a reduced Power flow and dynamic model for the machine as seen at Point of Interconnection
- Using the playback feature of PSLF, simulate the dynamic behavior of the machine for the measured voltages and frequencies
- Compare the measured values of active and reactive power at the Point of Interconnection with the simulation results

The combustion turbine of a combined cycle plant (162 (The Referenced Disturbance is Shown Below)

Fig 1 -Diablo 2 tripped, Frequency dropped to: 59.87 Hz at 12:29:32.6 on February 02, 2014 (AZ)

The combustion turbine of a combined cycle plant (162 MW) (Comparison of Active Power Dynamical Responses)

Fig 2 – Comparison of P-actual and P-simulated for CC (very good match)

The combustion turbine of a combined cycle plant (162 MW) (Comparison of Reactive Power Dynamical Responses)

Fig 3 – Comparison of Q-actual and Q-simulated for CC (reasonably a good match)

The Wind Turbine plant (265 MW) (The Referenced Disturbance is Shown Below)

Fig 4 -Forced loss of generation at Intermountain Generating Station, Frequency dropped to: 59.88 Hz at 09:54:22.733 on February 27, 2014 (AZ)

The Wind Turbine plant (265 MW) (Comparison of Active Power Dynamical Responses)

Fig 5 – Comparison of P-actual and P-simulated for WT (The difference may be due to wind pick-up)

The Wind Turbine plant (265 MW) (Comparison of Reactive Power Dynamical Responses

Fig 6 – Comparison of Q-actual and Q-simulated for WT (reasonably a good match)

The Solar PV plant (170 MW) (The Referenced Disturbance is Shown Below)

Fig 7 -Forced loss of generation at Intermountain Generating Station, Frequency dropped to: 59.88 Hz at 09:54:22.733 on February 27, 2014 (AZ)

The Solar PV plant (170 MW) (Comparison of Active Power Dynamical Responses)

Fig 8 – Comparison of P-actual and P-simulated for PV (good match)

The Solar PV plant (170 MW) (Comparison of Reactive Power Dynamical Responses)

Fig 9 – Comparison of Q-actual and Q-simulated for WT (There seems to be some issues: either in the model or in the settings)

EXAMPLE 5 - MODAL ANALYSIS POWER SYSTEM OSCILLATIONS

- Power system small signal stability
- Insufficient damping of system oscillations
- Low-frequency oscillation: 0.1 ~ 2 Hz
- Contributing factors
 - Heavy power transfer
 - Loosely connected system
 - Excitation control system responses

EXAMPLE 5 - MODAL ANALYSIS POWER SYSTEM OSCILLATIONS

- Local -Mode frequency: 0.7 ~ 2.0 Hz
- Global -Areas against areas Mode frequency < 0.7 Hz</p>

Identifies Proper Damping of Local Osc.

Identifies Potential System Problems

EXAMPLE - 6 GEN SHAFT ROTOR ANGLE MEASUREMENT

Initial Results CT1 (γ) = 106 Deg CT2 (γ) = 93 Deg ST1 (γ) = -73 Deg

EXAMPLE - 6 GEN SHAFT ROTOR ANGLE MEASUREMENT

A 💦 Sempra Energy utility

EXAMPLE 7 - SYSTEM LATENCY

FUTURE APPLICATIONS & CHALLENGES

- Islanding Detection
- High Renewable, PV & Wind Penetration
- Oscillation Monitoring
- Voltage Stability Prediction
- Rotor Angle Shaft
- WAM & RAS Schemes

