FIDVR Events

- Transmission FIDVR events recorded for decades
- Evolution of FIDVR unknown
- Distribution FIDVR impacts unknown

http://fidvr.lbl.gov/
Valley PQ Meters in Distribution System

- Installed 25 PQ meters at Valley Distribution system
 - Middle of line
 - End of line
 - Different phases
 - Different distribution circuits
PQ Meters Installation

- Voltage trigger recording events (V ≤ 80%)
 - Sinusoidal waveform (V, I, P, Q)
 - RMS waveform
- Trend recording (V, I, P, Q)
 - 1 minute resolution
- Not synchronized
- Recorded in memory cards
Localized FIDVR Events

- There were many localized FIDVR events that were not shown in the transmission system PMUs
- Typical air conditioner stalling behavior
- Voltage depressed for many seconds below 75% at various distribution circuits
- Overvoltages 114%
FIDVR Events

• There were some FIDVR events that were recorded by transmission system PMUs
• Subtransmission depressed voltage 80%
• Distribution depressed voltage 55~65%
• Overvoltages 115%
VRT Recommendation

- Recorded distribution FIDVR events helped proposing voltage ride through (VRT) parameters
 - California Rule 21
 - IEEE 1547
- NERC, FERC, WECC voltage ride through standards need to be revised to tolerate FIDVR events
VRT Recommendation (cont..)

- Zoomed RMS voltages are between 30~40%
- Low depressed voltages
Conclusion

• There is the need of advanced distribution PQ meters
 – Synchronization (e.i. GPS)
 – Record RMS, sinusoidal, phasor, harmonics
 – High sampling trend data at steady state
 – Friendly GUI that can display multiple points
 – Heavy duty (withstand deserts temperatures 40F~150F)
 – Easy, safe, inexpensive to install (up to 600V)
 – Easy communications (cell modem, radios, etc)

• Advanced PQ meters future applications
 – Dynamic impedance calculation
 – Support system protection
Richard Bravo
Richard.bravo@sce.com
Southern California Edison
Field Technologies
DER Group