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OVERVIEW PROJECT INFO AND DUKE PMU INSTALLATION

- Joint project with Duke Energy, NC State University Freedm center, and SAS
- PI Historian data from 100+ PMUs on Duke Carolinas transmission grid

- Develop analytics to:
- Understand Steady State operation
Detect events on the network
Categorize the event on the network
Direct appropriate action based on the event
Capture data for post event analysis
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STREAMING

DATA AND BIG HIGH SPEED VS. LARGE VOLUME
DATA
Streaming Data Big Data
* High speed, real-time » Large volume
« Continuous analysis  On-demand analysis

» Specific historical context  Full historical context
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DATA PREPARATION AND QUALITY

Working with Pl System compressed data

Use uncompressed tag (Frequency) to detect missing time periods
Difference between missing data and bad data

Monitor status tag. Status may be updated at multiple points in the data chain

- At the PMU, at the data collector, in the Pl System

- Sometimes status in the measurement field

Cross check values for consistency

- Freq =0, Angle = 45 (loss of GPS signal)

- Some PMUs were configured differently (Freq tag), this was corrected
- Missing measurement during phase angle “wrap” — do not interpolate
Calculate phase angle differences between PMU pairs

Automate data preparations and analytics
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EVENT DETECTION FREQUENCY DATA FROM LINE TRIP EVENT

Original data (5§ min period)

Problem: how to
detect events that
occur within specs

quency

« Frequency varies
within engineering
specifications

MCGUIRERCKSPRING_Fre

« Events occur, but are
still within specification
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EVENT DETECTION CONTROL CHART ANALYSIS OF RESIDUALS

Solution: Forecast
expected values and
detect deviations

Residual — difference »
from expected value

Expected value
based on times series »
model

Residual
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EVENT

DETAIL CHART FOR EVENT

IDENTIFICATION

Problem: How to
take incoming
events and
categorize them

 Current oscillates
after event, but then
dampens down to
normal

|_Magnitude
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EVENT

IDENTIEICATION SIMILARITY ANALYSIS

The SIMILARITY Procedure

‘Warp Plot for Input=iapm_input and Target=iapm target

Solution: Use
similarity analysis and
time-series data
mining to categorize N
data streams 21 |

Sequences

« Similarity between
incoming stream and
reference time series
are measured and
quantified

Good match

Sequences

‘Warp Plot for Input=iapm_input and Target=iapm_target
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EVENT

IDENTIEICATION MULTIPLE EVENTS ALIGNED BY EVENT TIME

I tsdm_cluster_days - Overlay Plot - IMP Pro =]

4= Overlay Plot

Problem: How to 5
build a reference —)
library of various |
event types
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EVENT
IDENTIEICATION TIME-SERIES DATA MINING, CLUSTER ANALYSIS

Solution: Use
time-series
clustering to
group similar
data patterns

Documented
events provide
cluster
identification

A Results - Node: TS Similarity Cluster Diagram: Event Signature TSDM

File Edit iew Window

st = s

- Cluster Constellation Plot

day22_even




EVENT

IDENTIFICATION EXAMPLE CLUSTERS

Lightning event Equipment issue

tsdm_cluster_days - Dverlay Plot 2 - IMP Pro M= Es|
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EVENT PREDICTION USING SIMULATION DATA FOR PREDICTION

Problem: how to
predict events which
are very rare

 Need to detect
situations that are
vulnerable for voltage
collapse

Reference: IEEE Transactions on Power Systems,
Vol 24, No 2, Diao, et al.
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EVENT PREDICTION DETERMINING CRITICAL SYSTEM STATES

Solution: Learning loop system using simulation data and predictive
models

Use PSSE to generate cases for voltage stability

Build decision tree to identify vulnerable situations

Use rules to review historical data and determine exposure

Use rules to monitor real time data to alert on vulnerable situations

W DN P

Gives warning before event, while still actionable

Osas

THE
POWER
TO KNOW.




CONCLUSION

- Analytic perspective on synchrophasor data
- Big data and streaming data techniques

- Various analytic technigues used

- Match technique to scenario
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