DATA BASELINE TECHNIQUES TO DETERMINE PMU EVENTS

BRAD KLENZ, SAS FOR NASPI WORKGROUP, OCT 21, 2014

OVERVIEW

PROJECT INFO AND DUKE PMU INSTALLATION

- Joint project with Duke Energy, NC State University Freedm center, and SAS
- PI Historian data from 100+ PMUs on Duke Carolinas transmission grid
- Develop analytics to:
 - Understand Steady State operation
 - Detect events on the network
 - Categorize the event on the network
 - Direct appropriate action based on the event
 - Capture data for post event analysis

STREAMING DATA AND BIG DATA

HIGH SPEED VS. LARGE VOLUME

Streaming Data

- High speed, real-time
- Continuous analysis
- Specific historical context Full historical context

Big Data

- Large volume
- On-demand analysis

DATA PREPARATION AND QUALITY

- Working with PI System compressed data
- Use uncompressed tag (Frequency) to detect missing time periods
- Difference between missing data and bad data
- Monitor status tag. Status may be updated at multiple points in the data chain
 - At the PMU, at the data collector, in the PI System
 - Sometimes status in the measurement field
- Cross check values for consistency
 - Freq = 0, Angle = 45 (loss of GPS signal)
 - Some PMUs were configured differently (Freq tag), this was corrected
 - Missing measurement during phase angle "wrap" do not interpolate
- Calculate phase angle differences between PMU pairs
- Automate data preparations and analytics

FREQUENCY DATA FROM LINE TRIP EVENT

Problem: how to detect events that occur within specs

- Frequency varies within engineering specifications
- Events occur, but are still within specification

EVENT DETECTION

CONTROL CHART ANALYSIS OF RESIDUALS

Solution: Forecast expected values and detect deviations

Residual – difference from expected value

Expected value based on times series model

DETAIL CHART FOR EVENT

Problem: How to take incoming events and categorize them

 Current oscillates after event, but then dampens down to normal

SIMILARITY ANALYSIS

Solution: Use similarity analysis and time-series data mining to categorize data streams

 Similarity between incoming stream and reference time series are measured and quantified

MULTIPLE EVENTS ALIGNED BY EVENT TIME

Problem: How to build a reference library of various event types

 Historical data aligned by time of event

TIME-SERIES DATA MINING, CLUSTER ANALYSIS

Solution: Use time-series clustering to group similar data patterns

 Documented events provide cluster identification

EVENT IDENTIFICATION

EXAMPLE CLUSTERS

Lightning event

Equipment issue

USING SIMULATION DATA FOR PREDICTION

Problem: how to predict events which are very rare

 Need to detect situations that are vulnerable for voltage collapse

Reference: IEEE Transactions on Power Systems, Vol 24, No 2, Diao, et al.

DETERMINING CRITICAL SYSTEM STATES

Solution: Learning loop system using simulation data and predictive models

- 1. Use PSSE to generate cases for voltage stability
- 2. Build decision tree to identify vulnerable situations
- 3. Use rules to review historical data and determine exposure
- 4. Use rules to monitor real time data to alert on vulnerable situations

Gives warning before event, while still actionable

CONCLUSION

- Analytic perspective on synchrophasor data
- Big data and streaming data techniques
- Various analytic techniques used
- Match technique to scenario

Acknowledgments:

Duke Energy: Tim Bradberry, Megan Vutsinas, John O'Connor

NC State: Aranya Chakrabortty, Kat Sico

SAS: Greg Link, Arnie de Castro, Glenn Lampley

