A Fault Monitoring and WAMS Installation on the GCC Interconnection Project

Based on a joint paper presented at the 4th General Conference of Arab Union of Electricity and Exhibition January 2013 by GCCIA, Qualitrol and Psymetrix

Peter Glover, Qualitrol
The GCC Interconnection Project

Phase 1 - the interconnection of Kuwait, Saudi Arabia, Bahrain and Qatar forming the GCC North Grid.

Phase II - the interconnection of the independent systems in the United Arab Emirates (UAE) and Oman forming the GCC South Grid.

Phase III - the interconnection of the GCC North and South Grids.

Connects six countries with 400 and 220KV links.
50Hz 400 KV Interconnection

Saudi Arabia 60Hz, connected by back-to-back HVDC converter at Al Fadhili.

Last section in the South between UAE and Oman is at 22KV

Long lines subject to oscillations – approximately 1,000Km end to end
Objectives

- Ensure Power System stability.
- Avoid instability factors.

Planned Power Interchanges on the Link
Initial Operational Studies

✓ Stability analysis identified different oscillation modes in particular an inter-area mode between North and South.

☐ The study recommends installation or activation of PSS.

☐ The target of 5% damping has been achieved, however, margin remains limited and justifies continue installation of PSS for large units without PSS.
✓ The nominal power rating of the equipments of the interconnection (lines, cables and transformers) shows the maximum power transfer capacities are not constrained by stability limits.

✓ The simulations of system faults have shown that the GCC system is stable except for few localized cases showing possibility of voltage collapse.

The study recommends the Installation of Recording devices like WAMS, FMS to monitor the system behavior and analyze system parameters to allow build precise model.
FMS/ WAMS in all substations in the Northern Grid

Signals monitored: voltages, currents, Substation DC supply, CB Trip coils, Protection, auxiliaries
The FMS will provide Post Mortem Analysis

- Line Trips
- Switching
- Oscillations
- Power Swing
- Frequency
- Voltage Dips
- Harmonics

POST MORTEM ANALYSIS

- Fault Recording,
- Distance to Fault,
- Slow Scan recording,
- Harmonic logging,
- Phasor Measurements

- All recorders are time synchronised to GPS source to an accuracy of 5 micro sec with ethernet connection.
The WAMS will provide Real Time Display & Archive

- In order to improve the observability of the inter-area modes and validate damping improvements;
- Comparison of active power flow, angular deviation and frequency seen between very far located units
- GPS time synchronized
FMS WAMS Installed at 7 substations

3 phase volts and currents, CB trip coils and digital inputs

SLOW SCAN data – rms mag, freq, harmonics, power at 50Hz sampling

PMU – streamed phasor data at 50Hz frame rate

DFR data – triggered records at 6.4KHz sampling

WAMS

PDC – phasor data concentrator and PhasorPoint software

FMS

CONTROL ROOM

Replay Plus – DFR Master Station software

QUALITROL
Defining Reliability
Event Type

Tabs on Left show GREEN/YELLOW/RED alarm status for different events like voltage, oscillations etc. **WHAT event is happening**

Location

Icons on the map change colour GREEN/YELLOW/RED **WHERE happening**.

Time

15 minute event history showing **WHEN events took place**.
50 Hz sampling of P / f / δ allows extraction of low frequency dominant modes of oscillation (up to seven different modes between 0.03Hz – 5Hz)

- Four attributes of mode are – Damping (% or seconds), Amplitude, Frequency (Hz), Phase (degrees)

Damping and Amplitude are mode stability indicators. Mode must be damped
Summary of oscillations detected over a 2 month period and their possible effect on stability:

- **0.25 Hz** inter-area mode is observed. The oscillations are in phase.
- **0.35 Hz** inter-area mode is observed.
- **0.5 Hz** inter-area mode is observed. The oscillations are in phase.

Mode Summary

<table>
<thead>
<tr>
<th>Mode</th>
<th>Average/Peak Decay Time</th>
<th>Average/Peak Amplitude</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 Hz</td>
<td>6 sec / 24 sec</td>
<td>2 MW / 30 MW</td>
<td>Interarea mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate risk</td>
</tr>
<tr>
<td>0.35 Hz</td>
<td>8 sec / 35 sec</td>
<td>2 MW / 35 MW</td>
<td>Interarea mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate risk</td>
</tr>
<tr>
<td>0.5 Hz</td>
<td>Well damped</td>
<td>Small</td>
<td>Low risk</td>
</tr>
</tbody>
</table>

Histogram of modes over 2 months:

- 0.26 Hz
- 0.35 Hz
- 0.5 Hz
- 1 Hz

Number of occurrences vs. Mode Frequency (Hz)
Example of a lightly damped 0.26Hz mode oscillation

Specific actions to reduce oscillations will involve:

- Identifying generators contributing to oscillation and redispaching them
- Design and/or tune Power System Stabilizers on these generators
- Strengthening the interconnection between neighbouring countries
Example of 0.35Hz Oscillation Behaviour

- All interarea modes are sensitive to operating mode;
- Dispatch & topology affect damping. Example shows damping degraded for 8 hours
 - Change in Operating Point affects stability
 - Observed patterns useful to determine operational response
Increase in active power at Salwa flowing North
Change in phase angle between Al Zour and AL Fadhili
Damped transient response with a dominant mode of 0.26Hz
Frequency (and angle) records show earliest movement close to generation loss.

Frequency falls to 49.97Hz in just over 4 seconds.
The FMS / WAMS were commissioned in 2012 and early results have already enhanced the understanding of the transient response of the GCC Interconnection.

The interconnection spans around 1000km from north to south. Early Operational Studies of Phase I and Phase III predicted a tendency for the system to experience low frequency inter-area oscillations. **WAMS** provides a means to analyse the performance of the whole interconnection such that it can be managed in such a way that all oscillations including the inter-area modes remain damped.

FMS transient and disturbance data will improve the understanding of the transient response, highlight potential weaknesses in the assets that can be corrected and thereby enhance the system security.
Q & A

Thank you for your time