

Overcoming Standard Limitations in Synchrophasor Systems

PJM PDC Testing Experience

Yi Hu, Vasudev Gharpure Quanta Technology LLC

Bill Walker, Jing Liu PJM Interconnection

> Knoxville, TN March 12, 2014

PJM Confidential 777364

- PJM Control Center PDC
- PJM PDC testing objectives
- PDC testing setup
- Tests performed
- Key findings from the testing
- Standard limitations and possible mitigation solutions
- Conclusions

⊅∕pjm

PJM SynchroPhasor Architecture

PJM Confidential 777364

PJM Control Center PDCs

Functional requirements

- Total number of PMUs
 - Data from TOs
 - Installing 300+ PMUs at 100+ substations
 - Building support for 150+ substations
 - Data exchange plan PMU data from neighboring ISOs
 - MISO: 263 PMUs
 - NYISO: 48 substations with PMUs
 - Total over 500 PMUs and at least to support twice that in near future
- Data forwarded to
 - RTDMS must be in single stream
 - PI database must be in single stream?

Objectives

- Determine if PDC will be able to meet PJM synchrophasor system requirements
 - Current needs
 - Getting data from all TOs
 - Adding time-tag to received data
 - Data quality
 - Future needs
 - Sufficient capacity
 - Adequate performance
- Have a clear understanding how PDC works
 - Setting status flags
 - Output behavior under various input conditions

PJM PDC Testing – cont.

Test setup

- Synchrophasor system simulator
 - Generate various test data streams based on the test case specification
- PMU Connection Tester
 - Capture PDC output data for analysis

Tested scenarios

- Normal condition
- Missing data packets
- Late data arrival
- Flagged PMU data
 - Invalid/PMU error
 - Lost sync indication
 - Sort by arrival
 - Trigger flags
- PMU configuration changes
- PMU data frame CRC error
- Time of Arrival check
- Capacity test

Key Findings

We need PDC standard!

- Size limitation of the standard
 - Could be a major issue
- Standardized way for PDCs to respond to
 - Setting flags
 - Data quality marking
 - Processed data indication
 - Change management (e.g. Add/remove PMUs from a stream)
 - Long interruptions of all input data

Data element size in data and configuration frames

– total bytes must be < 65536 (frame size)

Data element	Data frame		CFG-1/2 frame	CFG-3 frame
	Integer	Floating		
Phasor	4	8	20	13-268
Analog	2	4	20	9-264
Digital	2	N/A	260	20-4100
Frequency	2	4	0	0
df/dt	2	4	0	0

Standard Limitations – cont.

Ultimate limit – One data element per PMU only

Data element	Max. # of F a data f	Max. # of PMUs in a CFG-1/2	
	Integer	Floating	frame
One phasor only	10,913	6,547	1,309
One analog only	16,369	10,913	1,309
One digital only	16,369		225

Standard Limitations – cont.

A sample PMU

 One voltage phasor, two current phasors, two analog values, and zero to three digital WORD

Mitigation Options

There are several options

- Limit data element
 - No digital, positive sequence phasors only
 - May not meet applications requirement
- Use CFG-3
 - Can get some relief
 - May not be a long term solution
- Multiple streams
 - Can be a solution
 - Complication on receiving side
- New standard or standard revision
 - Preferred but will take some time

- PDC testing is important to
 - Understand how they function
 - Whether they can meet system functional and performance requirements, and
 - Whether they are interoperable with other system components
- Using synchrophasor system simulator is an effective way to perform such tests
- For large-scale synchrophasor systems, current standard will become a major limitation in transporting synchrophasor data
 - Configuration frame CFG-1/CFG-2 is the bottleneck
- There are some mitigation options
 - Standardized approach is preferred

