

Advanced analytics and visualization of PMU data

Chuck Wells and Tim Bradberry OSIsoft and Duke Energy

March 30, 2011

Outline

- Summary of Duke Energy's SGIG project
- Importance of time accuracy in PMUs
- Review of selected phase angle data at Duke
 - Importance of unwrapping and order dependence
- Effects of compression on disk storage
- Visualization Examples
 - WECC, Entergy, EIPP, FNET

Duke's SGIG Project

Project SCOPE

- Single transmission owner in project and 104 PMUs
- Transmission elements monitored by PMUs
- –12 elements >345 kV (500 kV)
- -92 elements ≥230 345 kV (230 kV)
- •100% of regional footprint monitored by PMUs (based on load)
- •52 substations with PMUs
- –2 PMUs/substation monitoring different elements
- •30 Samples/second
- •Stand Alone SEL 351A
- •PMU installation rate (stations)
- -# installed: 36 total as of 5/30/2012
- # installed: 52 total, 49 new, 3 replacement by May 2013

PMU structure

- PDCs
- –2 BA/TO control centers with PDCs (using *open*PDC); each center has 1 primary and 2 regional clusters (see next slide)
- –Archive/database status
- •70 terrabyte
- •12 months of data to be readily accessible
- Communications system
- –Communication across TO's private network
- –Utilize IP Network

Primarily owned by TO with some leased circuits

PDC Stacking

Current PI Displays

PI ProcessBook - [PMU Data.PDI] Eile Edit View Insert Tools Draw Arrange Window Help Frequency 11/16/2011 4:40:00 AN 60.1 60.05 - Berne Berne de Marriere 0 59.95 59.9 • • **→** C 4:35:30 4:36:00 4:36:30 4:37:00 4:38:00 4:38:30 4:39:00 4:39:30 A Phase Voltage Magnitude 11/16/2011 4:40:00 AN -130000 125000 4:36:00 4:36:30 4:37:00 🔍 🔍 🔶 C 4:38:00 4:39:00 4:35:30 4:38:30 4:39:30 A Phase Voltage Angle 11/16/2011 4:40:00 AM 1 4:35:30 0.0. 4:36:00 4:36:30 4:37:00 4:38:00 4:38:30 4:39:00 4:39:30 A Phase Current Magnitude 11/16/2011 4:40:00 AM • • < <> 2 4:35:30 4:36:00 4:36:30 4:37:00 4:38:00 4:39:00 4:38:30 4:39:30 A Phase Current Angle 11/16/2011 4:40:00 AN 4:38:30 4-35-30 4.36.00 4.36.3 4:37:00 4:38:00 4:39:00 4:39:30

Pros and Cons of Unwrapping

- Pros
 - Eliminate 360 swings that occur when angles wrap at different times
 - Can easily see which way frequency is trending
 - Eliminates sawtooth waveform
 - Can still compute angle differences easily

- Cons
 - Unbounded angle is not intuitive and can be confusing
 - If PMU data is lost can look like event

PMU accuracy

Suggested basic analytics

- Unwrap each voltage and current angle
 - C37.118 angles are discontinuous (± 180)
- Compute angle differences from the unwrapped angles
- Compute frequency differences
- Compute FFT of frequency differences
 - Several window widths are required to pick up events of interest
- Compute damping coefficients at each mode.

Examples: Nine unwrapped angles and one wrapped

Zoom

disturbance

Deeper zoom

Duke A voltag	ge angles		a a		 -4449 € - 5 	5 e14447.7 · Subst	- 14 14 14.		1
0 0	रु रु र	<u>, क क</u>	<u>, , , , ,</u>	<u>, , , ,</u>	<mark>→ →</mark> o -4446.7	o -4445.7	• • •	• • • •	· • •
200					♦ -4442.3	◆ -4441.3			
0						d)			
<u>.</u>		<u>17 - 18 - 1</u>		1	■ -4450.8	-4449.8		-1	
					4440.0	D 4440.9			
					A -4401.0 - 0	SI A 44450 Subst			
					± -128.64	± -127.66			
					-128 49	-125.92			
4000									
-1000		e							
						Ĩ			
-2000									
						Ť.			
						-			
-3000									
						Ĩ			
4000									
-4000		8							
						\sim 1 \square			
			· · · · · · · · · · · · · · · · · · ·	*				× *	
-5000				1.00000					

B phase voltage angles

Zoomed in view

Unwrapping comparison

Compression of Voltage Angle

	А	В	С	D	E	F	G	Н	I	J
1		VoltageAngle_30	VoltageAngle16_30	Delta	VoltageAngle_spec_30	Delta	VoltageAngle_5X_30	Delta	VoltageAngle_20X_30	Delta
54004	Average	-23.777	-23.777	0.000	-23.777	0.000	-23.777	0.000	-23.775	-0.002
54005	Variance	10364.174	10364.170	0.000	10364.177	0.000	10364.381	0.001	10365.345	0.014
54006	Maximum	179.990	179.989	0.005	179.990	0.010	179.990	0.050	179.990	0.200
54007	Minimum	-179.998	-180.000	-0.005	-179.998	-0.010	-179.998	-0.050	-179.998	-0.200
54008	Compdev					0.010		0.050		0.200
54009	Archived events	54001	54001		14813		1979		766	
54010	% Comrpession	0	0		72.6%		96.3%		98.6%	

Table 1 Comparison of three levels of compression

Angle compression results

Voltage Angle versus time (30 samples per second)

Voltage angle comparison

VoltageAngle_20X_30

Zero crossing comparison

Angle zero crossing

Tables (Voltage Magnitude and Current angle

А	В	С	D	E	F	G	Н	l.	J
	VoltageMag_30	VoltageMag16_30	Delta	VoltageMag_spec_30	Delta	VoltageMag_5X_30	Delta	VoltageMag_20X_30	Delta
Average	286.386572	286.386581	-0.000009	286.384490	0.002083	286.335517	0.051055	286.747078	-0.360506
Variance	0.073778	0.073806	0.000028	0.073327	0.000619	0.079891	0.012695	0.008674	0.041996
Maximum	287.094666	287.099823	0.009155	287.065155	0.056366	287.047974	0.281799	286.908386	0.190887
Minimum	285.567078	285.561707	-0.009155	285.567078	-0.056366	285.659576	-0.281219	286.585754	-1.081024
Compdev					0.056368		0.281841		1.127366
Archived events	54001	54001		2552		135		0	
% Comrpession	0	0		95.3%		99.8%		100.0%	

А	В	С	D	E	F	G	Н	l I	J
	CurrentAngle_30	CurrentAngle16_30	Delta	CurrentAngle_spec_30	Delta	CurrentAngle_5X_30	Delta	CurrentAngle_20X_30	Delta
Average	-25.952	-25.952	0.000	-25.953	0.000	-25.954	0.001	-25.955	0.002
Variance	11079.841	11079.841	0.000	11079.841	0.000	11079.845	0.000	11079.726	0.008
Maximum	179.998	180.000	0.005	179.998	0.010	179.998	0.050	179.998	0.200
Minimum	-179.996	-180.000	-0.005	-179.996	-0.010	-179.996	-0.050	-179.996	-0.200
Compdev	0		0		0.01		0.05		0.20
Archived events	54001	54001		42815	42815 19867			3436	
% Comrpession	0	0		20.7%		63.2%		93.6%	

Current magnitude and VA

А	В	С	D	Е	F	G	н	l I	J
	CurrentMag_30	CurrentMag16_30	Delta	CurrentMag_spec_30	Delta	CurrentMag_5X_30	Delta	CurrentMag_20X_30	Delta
Average	110.91319	110.91318	0.00000	110.91364	-0.00045	110.92317	-0.00998	110.99160	-0.07841
Variance	11.22509	11.22508	0.00002	11.22435	0.00033	11.21006	0.01634	10.79176	0.22518
Maximum	136.02931	136.03625	0.00763	136.02931	0.05502	136.02931	0.27509	136.02931	1.10043
Minimum	102.38154	102.37434	-0.00763	102.38154	-0.05502	102.52757	-0.27511	103.23901	-1.10039
Compdev	0		0		0.05502		0.27512		1.10047
Archived events	54001	54001		35344		11118		1609	
% Comrpession	0	0		34.5%		79.4%		97.0%	

А	В	С	D	E	F	G	Н	1	J
	VA_30	VA16_30	Delta	VA_spec_30	Delta	VA_5X_30	Delta	VA_20X_30	Delta
Average	31763.4284	31763.4270	0.0014	31763.4992	-0.0708	31765.6848	-2.2564	31777.9052	-14.4768
Variance	882450.2707	882462.7340	0.7773	882411.5961	16.4871	881633.8320	894.8653	862104.7056	12121.7097
Maximum	38863.8594	38865.3203	1.5273	38863.8594	13.0820	38863.8594	65.4473	38863.8594	261.7676
Minimum	29360.5273	29361.8574	-1.5273	29360.5273	-13.0879	29403.2168	-65.4414	29444.3438	-261.7324
Compdev	0.0000		0.0000		13.0895		65.4476		261.7906
Archived events	54001	54001		37791		13513		2013	
% Comrpession	0	0		30.0%		75.0%		96.3%	

+

VAR and frequency

А	В	С	D	E	F	G	Н	l.	J
	VAR_30	VAR16_30	Delta	VAR_spec_30	Delta	VAR_5X_30	Delta	VAR_20X_30	Delta
Average	9253.44962	9253.45127	-0.00165	9253.45610	-0.00648	9253.88072	-0.43111	9257.11393	-3.66431
Variance	464815.73667	464815.97962	0.19366	464815.15704	0.78254	464759.52293	63.83568	463569.45473	1428.92089
Maximum	14566.08105	14566.48438	0.76270	14566.08105	4.15039	14566.08105	20.74316	14566.08105	83.00293
Minimum	7156.90820	7156.59033	-0.76270	7156.90820	-4.14844	7156.90820	-20.75098	7170.46924	-82.99805
Compdev	0		0		4.15021		20.75104		83.00416
Archived events	54001	54001		46591		27190		7435	
% Comrpession	0	0		13.7%		49.6%		86.2%	

А	В	С	D	E	F	G	Н	l.	J
	Frequency_30	Frequency16_30	Delta	Frequency_spec_30	Delta	Frequency_5X_30	Delta	Frequency_20X_30	Delta
Average	59.9968750	59.9968747	0.0000003	59.9968750	0.0000000	59.9968759	-0.000008	59.9968732	0.0000018
Variance	0.0001222	0.0001222	0.0000000	0.0001222	0.0000000	0.0001222	0.0000000	0.0001219	0.000003
Maximum	60.0349197	60.0350952	0.0003052	60.0349197	0.0000611	60.0349197	0.0003014	60.0349197	0.0011979
Minimum	59.9657326	59.9655151	-0.0003052	59.9657326	-0.0000611	59.9657326	-0.0003014	59.9657326	-0.0011979
Compdev	0.0000000		0.0000000		0.0000600		0.0002998		0.0011990
Archived events	54001	54001		48319		30763		10946	
% Comrpession	0	0		10.5%		43.0%		79.7%	
70 Compession	0	0		10.370		43.070		13.170	š

Visualization of phasor data

Visualization of phasor data

Eastern Interconnection oscillation

Angle surface

FFT Waterfall

WORM chart Eastern Interconnection (FNET data)

Customer Examples- Grid coherency

Real time FFTs, Phase portraits, SQC

Fig. 12. Spectral history of AEP Kanawha River bus frequency for August 14 Blackout. 12:00-16:10 EDT

Customer Examples

Contacts

Chuck Wells

cwells@osisoft.com

(650) 504-6278

Tim Bradberry Duke Energy, EMS Engineering Carolinas (704) 382-4728 Tim.Bradberry@duke-

energy.com

