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I ea Oscillation Monitoring

Using PMU measurements to estimate the frequency, damping factor and residue of the
different electro-mechanical oscillation modes
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Wide-Area Oscillation Monitoring

State of the Art Monitoring Architecture
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Wide-Area Oscillation Monitoring

State of the Art Monitoring Architecture ~ Proposed Distributed Monitoring Architecture
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Wide-Area Oscillation Monitoring

State of the Art Monitoring Architecture  Proposed Distributed Monitoring Architecture

Pros:

Pros: * Reduced computational time

* Less Communication * Privacy still preserved

* Guaranteed data privacy » More secure and resilient

Cons: * More efficient and tractable data
* High risk for security and resiliency handling
* High computational load for central Cons:

computer

* Significant increase in communication
* Higher computational time for very infrastructure

large data volumes * Asynchrony between PDCs

* Communication delays
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Swing Equation

* Swing equation of the i*” machine:
§; = ws (wi — 1)

E;FE
M,;6; = P, — Z ( Ul Sin(Jik)) — Di(w; — 1)

0\ Tik

* Linearized dynamic model (after Kron reduction)
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y(t) = col(A9), for i € S Figure: A power system with both
. B PV buses (differential bus) and PQ
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Oscillation Monitoring

n
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* Our objective is to use PMU measurements y () to estimate (2;, o; and
col(ri,...,mps) fori=1,---,n

* We use Prony algorithm for this.

* Let us consider the discrete-time transfer function of A#; from a single input
disturbance:
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Centralized Prony Method

Step 1. Find a; through ay,

AG;(2n) AGi(2n—1) - AG;(0)] [ —ar
Aei(Z’n + 1) A91(2n) s A@l(l) —a2
Aei(Qn + 2) Aei(2n + 0 — 1) e AG; (f) —aon

———
c; H; a

Finding the global a using all available measurements by solving:

]

| —

Solve this using Batch Least Squares - Centralized Prony Method
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Centralized Prony Method

Central

0; — (Hi,ci), t=1,...,p

H1 C1
= : a—= :
H, Cp
H1 C1
.1 . . 2
= a=argmin -|| | . |a—|:|]|2
a 2 : :
Hp Cp

S. Nabavi and A. Chakrabortty 10/19



Distributing the Prony Method

Supervisory ISO Multiple Computational Areas
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Global Consensus Problem:

minimize E 1 2||H a; — CzH2
ay,..., ayn,z

subjecttoa; —z =0, fori=1,...,N
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Distributed Optimization Algorithms

Supervisory ISO

* Gradient-Based Methods
* Distributed Subgradient Method
(DSM)
* Nesterov Method
* Dual Decomposition Based Methods

* Alternating Direction Method of
Multipliers (ADMM)

S. Nabavi and A. Chakrabortty 12/19



Alternating Direction Method of Multipliers (ADMM)

Iteration k&

Step 1 Update w; and a; locally at PDC ¢

™t = (HM)THY +p1) 7 (H) e — w4 pa®)
(ht1) _ 50ty

K3

wk D — ) | o(a
Step 2 Gather the values of agkﬂ)
(k+1)

7

at the central PDC

Step 3 Take the average of a
Step 4 Broadcast the average value (é(k“)) to local PDCs

Step 5 Finding the frequency €2; and damping factors o; at each
local PDC using @(®) from the characteristic equation
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Targeted Estimation of Inter-Area Modes

Given PMU data y(t) = col(AV;, Ab;), we can estimate
modes of the aggregated model.
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PMU incent New Mexico

* Assuming inter-area modes to lie between 0.1 Hz and 1 Hz, apply
band-pass filtering

Los Angeles
* Use filtered data to estimate oscillations between aggregate (Moxico
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Simulation Results

Simulation results for the IEEE-39 bus model,

 Simplified model of the
New-England power system

* 39 Bus, 10 Generators

* 4 Coherent Areas (shown in
different colors)

* Simulations are performed in
Power System Toolbox (PST)

* A three-phase fault occurred at line
connecting buses 4 and 5, started at
t = 1.0 (sec), cleared at near end at
t = 1.01 (sec), and cleared at far
end at £ = 1.03 (sec).
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Simulation Results
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Implementation via Distributed Exo-GENI Communication
Network

RTDS lab ExoGENI

Amplifier

L
Ethemet -~

oy _w»

m DA
DN F O

DANARg NS Coste Satia Fiber optic network connecting
campuses of NC State, Duke
University & UNC Chapel Hill

RTDS-PMU Lab at NCSU

 RTDS: Simulate high fidelity detailed models of large power systems

o MS: Multi-ventor PMU-based hardware-in-loop simulation testbed

 EXoGENI: Widely distributed networked laaS platform for experimentation and computational
tasks.

» PDCs connected to ExXoGENI network through 10 Gbps Breakable Experimental Network (BEN).



Experimental Network Topologies
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Calculating End-to-End Network Delays

Server VM
- =
HMI/Communication Ta
T3 cecure Security/Privacy . T3
Communication Central decision making Communication
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Result Streaming
Client2 VM
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PMU source data sampling time

PMU data communication delay time T2
LS algorithm computation time
Estimation Result communication time
Computation time for root finding and
averaging B
Vi

Tt= max(T'O+T1+T2+ T3, TO+T1+T2+73) + T4

PMU1/PDC1

Make Tt as deterministic as possible
Make Tt as small as possible
Make all steps secure and high-confidence
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Calculating End-to-End Network Delays

END-TO-END DELAY OF EXPERIMENT I: CLS vS DLS

Algorithm | To(us) T3(us) Total (us)
Scenario 1: 3 VMs at RENCI rack

CLS 134,466 13.054 147,520

DLS 22,088 19.763 54,150
Scenario 2: 2 Clients at RENCI, Server at UvA

LS 169,301 3,178,939 3,348,240

DLS 23,752 3,187,137 3,229,170
Scenario 3: Client]l at RENCI, Client2 at Houston, Server at UvA

i B 179913 | 3,267,583 3,447,497

DLS 26.079 3,191,082 3,274,337

\ 4

Choice of VM location decided by network traffic




Conclusions

* Development of distributed algorithms is imperative considering the increasing
number of PMUs.

* We consider the problem of estimating the frequencies and damping factors of
oscillation modes using Prony method in a distributed way.

* The results of ADMM verify that the global values of the inter-area modes can be
achieved after a number of iterations.
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