Distributed Estimation of Inter-Area Oscillation Modes in Large Power Systems using ExoGENI-WAMS Communication Network

Aranya Chakrabortty

FREEDM Systems Center North Carolina State University, Raleigh

March 12, 2014 NASPI Working Group Meeting, Knoxville, TN

Introduction

Problem Formulation - Wide Area Oscillation Monitoring

Centralized Prony Method

Distributed Prony Method

Simulation Results

Conclusions and Future Work

Using PMU measurements to estimate the frequency, damping factor and residue of the different electro-mechanical oscillation modes **IEEE 68-Bus Model**

The WECC Model

4/19

S. Nabavi and A. Chakrabortty

State of the Art Monitoring Architecture

State of the Art Monitoring Architecture

Proposed Distributed Monitoring Architecture

State of the Art Monitoring Architecture

Pros:

- Less Communication
- Guaranteed data privacy

Cons:

- High risk for security and resiliency
- High computational load for central computer
- Higher computational time for very large data volumes

Proposed Distributed Monitoring Architecture Pros:

- Reduced computational time
- Privacy still preserved
- More secure and resilient
- More efficient and tractable data handling

Cons:

- Significant increase in communication infrastructure
- Asynchrony between PDCs
- Communication delays

Swing Equation

• Swing equation of the i^{th} machine:

$$\dot{\delta}_i = \omega_s(\omega_i - 1)$$
$$M_i \dot{\omega}_i = P_{m_i} - \sum_k \left(\frac{E_i E_k}{x_{ik}} \sin(\delta_{ik})\right) - D_i(\omega_i - 1)$$

• Linearized dynamic model (after Kron reduction)

$$\begin{bmatrix} \Delta \dot{\delta}(t) \\ \hline \Delta \dot{\omega}(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & \omega_s I_n \\ \hline \mathcal{M}^{-1}L & -\mathcal{M}^{-1}\mathcal{D} \end{bmatrix}}_A \begin{bmatrix} \Delta \delta(t) \\ \hline \Delta \omega(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \hline \mathcal{M}^{-1}\mathbf{e}_j \end{bmatrix}}_B u(t),$$
$$\mathbf{y}(t) = \operatorname{col}(\Delta \theta), \text{ for } i \in S$$
$$\mathcal{L}_{ii} = -\sum_{k \in \mathcal{N}_i} \frac{E_i E_k}{x_{ik}} \cos(\delta_{i0} - \delta_{k0}), \ \mathcal{L}_{ij} = \frac{E_i E_j}{x_{ij}} \cos(\delta_{i0} - \delta_{j0})$$

Figure: A power system with both PV buses (differential bus) and PQ buses (algebraic bus)

Oscillation Monitoring

$$y_{j}(t) = \Delta \theta_{j}(t) = \sum_{i=1}^{n} \left(r_{j,i} e^{(-\sigma_{i}+j\Omega_{i})t} + r_{j,i}^{*} e^{(-\sigma_{i}-j\Omega_{i})t} \right)$$
$$\mathbf{y}(t) = \begin{bmatrix} \Delta \theta_{1}(t) \\ \vdots \\ \Delta \theta_{p}(t) \end{bmatrix} = \sum_{i=1}^{n} \left(\begin{bmatrix} r_{1,i} \\ \vdots \\ r_{p,i} \end{bmatrix} e^{(-\sigma_{i}+j\Omega_{i})t} + \begin{bmatrix} r_{1,i}^{*} \\ \vdots \\ r_{p,i}^{*} \end{bmatrix} e^{(-\sigma_{i}-j\Omega_{i})t} \right)$$

- Our objective is to use PMU measurements $\mathbf{y}(t)$ to estimate Ω_i , σ_i and $\operatorname{col}(r_{1,i}, \ldots, r_{p,i})$ for $i = 1, \cdots, n$
- We use Prony algorithm for this.
- Let us consider the discrete-time transfer function of $\Delta \theta_i$ from a single input disturbance:

$$\Delta \theta_i(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{2n} z^{-2n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{2n} z^{-2n}}.$$

Centralized Prony Method

Step 1. Find a_1 through a_{2n}

$$\underbrace{\begin{bmatrix} \Delta \theta_i(2n) \\ \Delta \theta_i(2n+1) \\ \vdots \\ \Delta \theta_i(2n+\ell) \end{bmatrix}}_{\mathbf{c}_i} = \underbrace{\begin{bmatrix} \Delta \theta_i(2n-1) & \cdots & \Delta \theta_i(0) \\ \Delta \theta_i(2n) & \cdots & \Delta \theta_i(1) \\ \vdots & & \vdots \\ \Delta \theta_i(2n+\ell-1) & \cdots & \Delta \theta_i(\ell) \end{bmatrix}}_{H_i} \underbrace{\begin{bmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_{2n} \end{bmatrix}}_{\mathbf{a}}$$

Finding the global a using all available measurements by solving:

Solve this using Batch Least Squares - Centralized Prony Method

Centralized Prony Method

$$\theta_{i} \rightarrow (H_{i}, \mathbf{c}_{i}), \quad i = 1, \dots, p$$

$$\Rightarrow \begin{bmatrix} H_{1} \\ \vdots \\ H_{p} \end{bmatrix} \mathbf{a} = \begin{bmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{p} \end{bmatrix}$$

$$\Rightarrow \mathbf{a} = \arg \min_{\mathbf{a}} \frac{1}{2} \| \begin{bmatrix} H_{1} \\ \vdots \\ H_{p} \end{bmatrix} \mathbf{a} - \begin{bmatrix} \mathbf{c}_{1} \\ \vdots \\ \mathbf{c}_{p} \end{bmatrix} \|_{2}^{2}$$

Distributing the Prony Method

Multiple Computational Areas

$$\begin{aligned} \hat{\theta}_1 &\triangleq \{\theta_{30}, \theta_{66}\} &\to (\hat{H}_1 \triangleq \begin{bmatrix} H_{30} \\ H_{66} \end{bmatrix}, \hat{\mathbf{c}}_1 \triangleq \begin{bmatrix} \mathbf{c}_{30} \\ \mathbf{c}_{66} \end{bmatrix}) \\ \hat{\theta}_2 &\triangleq \{\theta_{16}, \theta_{53}\} &\to (\hat{H}_2 \triangleq \begin{bmatrix} H_{16} \\ H_{53} \end{bmatrix}, \hat{\mathbf{c}}_2 \triangleq \begin{bmatrix} \mathbf{c}_{16} \\ \mathbf{c}_{53} \end{bmatrix}) \\ \hat{\theta}_3 \triangleq \{\theta_{68}\} &\to (\hat{H}_3 \triangleq H_{68}, \hat{\mathbf{c}}_3 \triangleq \mathbf{c}_{68}) \\ \hat{\theta}_4 \triangleq \{\theta_{56}\} &\to (\hat{H}_4 \triangleq H_{56}, \hat{\mathbf{c}}_4 \triangleq \mathbf{c}_{56}) \end{aligned}$$

Global Consensus Problem:
$\begin{array}{ll} \underset{\mathbf{a}_1,\ldots,\mathbf{a}_N,\mathbf{z}}{\text{minimize}} & \sum_{i=1}^N \frac{1}{2} \ \hat{H}_i \mathbf{a}_i - \hat{\mathbf{c}}_i \ _2^2 \\ \text{subject to } \mathbf{a}_i - \mathbf{z} = 0, \text{ for } i = 1, \ldots, N \end{array}$

Distributed Optimization Algorithms

- Gradient-Based Methods
 - Distributed Subgradient Method (DSM)
 - Nesterov Method
- Dual Decomposition Based Methods
 - Alternating Direction Method of Multipliers (ADMM)

Iteration k

Step 1 Update \mathbf{w}_i and \mathbf{a}_i locally at PDC i

$$\begin{split} \mathbf{a}_{i}^{(k+1)} &= ((H_{i}^{(k)})^{T} H_{i}^{(k)} + \rho I)^{-1} ((H_{i}^{(k)})^{T} \mathbf{c}_{i}^{(k)} - \mathbf{w}_{i}^{(k)} + \rho \bar{\mathbf{a}}^{(k)}) \\ \mathbf{w}_{i}^{(k+1)} &= \mathbf{w}_{i}^{(k)} + \rho (\mathbf{a}_{i}^{(k+1)} - \bar{\mathbf{a}}^{(k+1)}) \end{split}$$

- Step 2 Gather the values of $\mathbf{a}_i^{(k+1)}$ at the central PDC
- Step 3 Take the average of $\mathbf{a}_i^{(k+1)}$
- Step 4 Broadcast the average value $(\bar{\mathbf{a}}^{(k+1)})$ to local PDCs
- Step 5 Finding the frequency Ω_i and damping factors σ_i at each local PDC using $\bar{a}^{(k)}$ from the characteristic equation

Targeted Estimation of Inter-Area Modes

Given PMU data $\mathbf{y}(t) = \operatorname{col}(\Delta V_i, \Delta \theta_i)$, we can estimate modes of the aggregated model.

- Massive volumes of PMU data from various buses
- Assuming inter-area modes to lie between 0.1 Hz and 1 Hz, apply band-pass filtering
- Use filtered data to estimate oscillations between aggregate clusters

WECC 500 (kV)

Simulation Results

Simulation results for the IEEE-39 bus model,

- Simplified model of the New-England power system
- 39 Bus, 10 Generators
- 4 Coherent Areas (shown in different colors)
- Simulations are performed in Power System Toolbox (PST)
- A three-phase fault occurred at line connecting buses 4 and 5, started at t = 1.0 (sec), cleared at near end at
 - t = 1.01 (sec), and cleared at far end at t = 1.03 (sec).

Actual Eigenvalues	Centralized Prony	Decentralized Prony	Distributed Prony
$-0.2333 \pm 3.7128j$	$-0.2341 \pm 3.7127j$	$-0.2339 \pm 3.7142j$	$-0.2339 \pm 3.7124j$
$-0.2375 \pm 5.7914j$	$-0.2323 \pm 5.7638j$	$-0.3818 \pm 5.5658j$	$-0.2199 \pm 5.7673j$
$-0.2718 \pm 6.4277 j$	$-0.3014 \pm 6.4228j$	$-0.2928 \pm 6.3887 j$	$-0.3003 \pm 6.4224j$

Implementation via Distributed Exo-GENI Communication Network

University & UNC Chapel Hill

- RTDS: Simulate high fidelity detailed models of large power systems
- MS: Multi-ventor PMU-based hardware-in-loop simulation testbed
- ExoGENI: Widely distributed networked IaaS platform for experimentation and computational tasks.
- PDCs connected to ExoGENI network through 10 Gbps Breakable Experimental Network (BEN).

Experimental Network Topologies

Calculating End-to-End Network Delays

Calculating End-to-End Network Delays

END-TO-END DELAY OF EXPERIMENT I: CLS VS DLS

Algorithm	$T_2(us)$	$T_3(us)$	Total (us)		
Scenario 1: 3 VMs at RENCI rack					
CLS	134,466	13,054	147,520		
DLS	22,088	19,763	54,150		
Scenario 2: 2 Clients at RENCI, Server at UvA					
CLS	169,301	3,178,939	3,348,240		
DLS	23,752	3,187,137	3,229,170		
Scenario 3: Client1 at RENCI, Client2 at Houston, Server at UvA					
CLS	179,913	3,267,583	3,447,497		
DLS	26,079	3,191,082	3,274,337		

Choice of <u>VM location</u> decided by network traffic

- Development of distributed algorithms is imperative considering the increasing number of PMUs.
- We consider the problem of estimating the frequencies and damping factors of oscillation modes using Prony method in a distributed way.
- The results of ADMM verify that the global values of the inter-area modes can be achieved after a number of iterations.