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Preventive Model of Operation

*Based on forecasted load, generation and contingencies
*Safe operation point established to sustain contingencies
*Contingencies can never occur

*Not prepared for unforeseen contingencies

*Vertically integrated requirement driven industry

°\Not optimal /

Uncertainties in Power System

*Distributed generation

‘renewable energy integration (solar/wind)
*De-regularization (generation/transmission/distribution)
*Market driven industry (bidding for rights)

Challenges

*Massive Data
*30 samples / second ( >2 million samples/day)
*Exponential increase with increase in deployed devices
*Model may not fit in memory
*Hampers latency

*Dynamic Behavior of Power system
*Changes the operating condition
*Should be able to update knowledge
*Incremental learning is required

*Downsampling NOT an Option
*Important information lost

Htage in KV
Htage in KV
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*Electric vehicl
\*Electric vehicles

Corrective Model of Operation
*Industry should be able to handle unforeseen problems

*Real time surveillance of Power system needed
ldentification and action needed on real time
*Efficient, Environment Friendly

Complements existing model of operation

&Handle uncertainties introduced in the system

Situational Awareness

*Prevent cascading failures

*Real time decision making using Synchrophasor data
*Mathematical methods/Machine learning methods
*Information extraction for effective decision making

*Cannot portray dynamic behavior of Power systems
Undermines use of high speed synchrophasor

Experimental Setup

*hardware-in-the-loop Simulation

*SEL421 and GE N60

28 PMU measurements used as features

Single Line to Ground, Transmission line loss, Generation Loss

°\Coordinated actions to prevent cascading of failures

Problems with Analytical Solutions

*Mathematical models cannot meet latency requirement of real time
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applications
*Utilize synchrophasor data for quick decisions

*Machine learning algorithms emulate power system behavior
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Machine Learning

*SVM, ANN, Decision Trees etc. for static/dynamic security assessment
and fault detection/classification
*Consume synchrophasor data

Evaluation Measures
*Kappa Statistics Event

*normalizes the accuracy by that of the chance predictors
*Ram Hours

*Every GB of RAM deployed for 1 hour ~ p0-pC
*Runtime 1-pC
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Strategy

*Event stream mining algorithm
*Event detection
*Process synchrophasor data without exceeding memory and
computational requirement
*incremental learning

*Hoeffding Tree
ecreates a decision tree from data stream
*analyzing each sample only once
estores sufficient statistics (required to grow itself) in its leaves
*Finds the best attribute considering only a small subset of the
training examples
*Number of examples necessary at each node is solved using
Hoeffding bound

*Expected to meet the latency requirements
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\ *Time (seconds) required for algorithm to run.
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Kappa Statistics with fixed size of hoeffding tree

m Tree Size (Nodes)
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Performance Measure in comparison to multi scan algorithms

Other Applications

*Useful in any massive data analysis
*Synchrophasor data
*Advanced Metering Infrastructure (AMI) data processing
*Online pricing signal processing
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\_ *Process Demand Response data processing W
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