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• Research Group Leader: Dr. Luigi Vanfretti, PhD 
• PhD Students 

- Rujiroj Leelaruji, Methodical command of protection and controllable devices through synchronized measurement 
technology. Funded by EKC2. 

- Yuwa Chompoobutrgool, Wide-Area Damping through Generator Control. Funded by ELFORSK. 
- Vedran Peric, Estimation of Electromechanical Mode Properties. Funded by Erasmus Mundus SETS PhD Program. 
- Tang Doan Tu, PMU-Assisted Voltage Instability Detection and Control. Funded by Erasmus Mundus SETS PhD 

Program. 
- Wei Li, Real-Time State Estimation of AC/DC Grids. Funded by the Swedish Energy Agency, SvK and ABB.  
- Muhammad Shoaib Almas, Real-Time Wide-Area Control of FACTS and VSC-HVDC in Hybrid AC and DC Grids . Funded 

by NER through the STRONGrid project 
- Tatiana Bogodorova, Synchrophasor-based Dynamic Model Validation.Funded by the EC through the iTesla FP7 

project. 
• MSc Student: Maxime Baudette. Real-Time Monitoring of Intra-Wind Farm Interactions. Start May 2012. 
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SmarTS Lab 
The Smart Transmission Systems Lab. 
 



• Smart Grid require Smart Operation, Smart Control and Smart Protection:  
- The ultimate goal should be to attain an automatic-feedback self-healing control system 

• Measure – Communicate – Analyze (System Assessment and real limits) – Determine 
Preventive/Corrective Actions – Communicate – Control and protect 

• To achieve this vision, new applications need to be developed in a controlled environment, allowing 
testing and considering the ICT chain 
 

How to develop a controlled environment for 
developing Smart Transmission Apps? 
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The SmarTS Lab Architecture 
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SmarTS Lab  
Comm. and Synchronization Architecture and Implementation 
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Synchrowave Phasor Data Concentrator – Gathering PMU 
Measurements, Time Alignment and Archival 
 

Input to the PDC from 3 
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(IP Configuration, Port 
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Synchrowave Central (Visualization of PMU Data) 
SEL AcSELerator Quickset (Relay Settings and HMI) 
 Display of real-time PMU 

data streams from SEL 
PDC 

SEL AcSELerator 
Display for Voltage 
and Current Phasors 

SmarTS Lab  
Software Implementation 



Off-line to RT Model 
Code Generation 

Model-to-Data 
Workflow 



Model-to-Data Proof of Concept Experiment 
(Hardware-in-Open-Loop) 
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What is observed at the PMU at 50 fps 
reporting rate? 

Generator mechanical 
power perturbation 

Generator mechanical power perturbation 

The whole process in real-time: 
Interaction with the model in real-time (Hardware-in-open-loop) 
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Modeling for Real-Time 
Hardware-in-the-Loop 

Simulation 

Video! 



 
 
 
 
SEL Products for Smart Transmission 
How we use SEL Products in our Lab. 



How we use SEL products in SmarTS Lab? 

 



Configuring Relay and PMU Features 

 



Configuring IEC 61850-8-1 (GOOSE) Features 

 



Configuring Synchrophasor Data Concentrator 

 



Visualization and Historian Configuration 
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Research Project Example 
Overcurrent Relay Modeling and Validation for  
PMU-Assisted Protection 
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Modeling and Implementation for RT Simulation 

Implementation in 
SimPowerSystems 

(MATLAB/Simulink) 



Software-in-the-Loop Validation 

Hardware-in-the-
Loop Validation 



Validation Results 

 



• When building such laboratory, many details need to be considered: Cost and Procurement. 
- Choice of real-time simulator  - It should fit  your needs - Research needs ≠ industry needs. 

• When operating such lab., a broad range of expertise is needed: 
- Clear knowledge on Real-Time modeling and simulation, with associated modeling phylosophy 
- From configuration of relays/PMU to PDC, and beyond (media converters, comm. network…) 

• Having devices that are flexible in their configuration is very helpful: 
- SEL products have make it possible to configure different experiments without complications. 
- The generosity of SEL made it possible to have the justification to make additional expenses. 

• Big lessons: 
- Separate your communication networks depending on the data type they will carry. 

• In our experiments having large amounts of PMU data had large impacts in the performance of IEC-
61850-8-1 and -9-2 (relay trip time was longer than using hardwires) 

• Performance can be enhanced by separating IEC-61850-8-1, -9-2, and PMU data - having IEC-61850-8-1 
operate even faster that hardwired tests. 

• Question: how can this be dealt with when all of the data will be under IEC 61850 with PMU under -9-5? 
- When using amplifiers, synchronization between each amplification source can be source of error 

for protection applications. 
 

Lessons Learned 
A fun experience! 
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Back up slides: 
Real-Time Simulation:  
Fundamentals and Applications 



• The term “real-time” is used by several industries to describe time-
critical technology. 

• Ambiguity: 
• For some sectors of the power industry real-time can range from seconds to 5-10 

minutes, while for others is in the range of milliseconds and lower. 

• This is connected to the “physical process” which is being dealt with, e.g. real-time 
markets (~10 min), real-time balancing (~5 min.),  real-time control (5-20 ms), and 
protection (~10-50 micro sec.). 

• The most proper usage of “real-time”, and the one we will use, is in the 
reference of embedded systems. 

• Embedded systems are (intelligent) electronic devices which interface 
with the real world to provide control, interaction and convenience. 

• Controllers, protective relays, etc. 

• So, when talking about “real-time” we will be talking of process taking 
place in fractions of a second (10-50 micro sec.) 

 

 

 

 

What is a real-time simulation? 



Real-Time System Configurations and Applications 

Rapid control/protection 
prototyping 

Hardware-in-the-loop Pure Simulation 
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Fault and 

Contingency 
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Good! Bad! 

Typical Application 
Hardware-in-the-loop control 

and protection testing Why use Real-Time Simulation? 

Testing and Validation 



What is a real-time simulation ? 
Definition : In a real-time system, we define the Time Step as 
a predetermined amount of time (ex: Ts = 10 µs, 1 ms, or 5 
ms).  
Inside this amount of time, the processor has to read input 
signals, such as sensors, to perform all necessary calculations, 
such as control algorithms, and to write all outputs, such as 
control signals (through analog, digital, or comm.ports). 
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Overruns : In a real-time system, when a predetermined  
time step is too short and could not have enough time to 
perform inputs, model calculation and outputs, there is an 
overrun. 
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What is a real-time simulation ? 
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What is a real-time simulation ? 

    Fixed-step solvers solve the model at regular time 
intervals from the beginning to the end of the 
simulation. 

 The size of the interval is known as the step 
size: Ts.  

Generally, decreasing Ts increases the 
accuracy of the results while increasing the 
time required to simulate the system. 



Opal-RT and RT-LAB system architecture 

Host Computer-Windows Target Computer 

TCP/IP 

Edition of Simulink model 

Model compilation with RT-LAB 

User interface 

I/O and real-time model execution 

QNX or Linux OS 

FTP and Telnet communication 
Possible with the Host 
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