
Introduction to

Open Source Software
 (the promise for sustainable long-term synchrophasor software development)

Prof.Dr.-Ing. Luigi Vanfretti

luigiv@kth.se
Associate Professor, Docent

Electric Power Systems Dept.
KTH

Stockholm, Sweden

Luigi.Vanfretti@statnett.no
Special Advisor in Strategy and Public Affairs

Research and Development Division
Statnett SF

Oslo, Norway

E-mail: luigiv@kth.se, luigi.vanfretti@statnett.no
Web: http://www.vanfretti.com

Working Group Meeting
March 11-12, 2014 - Knoxville, TN, USA

mailto:luigiv@kth.se
mailto:luigi.vanfretti@statnett.no
http://www.vanfretti.com/

Disclaimer

• The information, views and opinions in this presentation are solely those
of the author

• iTesla Project, Statnett SF, or KTH Royal Institute of Technology may not
share the views of the contents of this presentation.

• Please keep in mind that I am a Univ. Professor…
– I am just an evangelist for free and open source software
– I am not a software engineer.
– I am not a lawyer with IPR background.
– I am not a business man.
– … there are certainly many people more knowledgeable than me about this topic.

• I am here to:
– Share the knowledge I have gained over 10 years of using and contributing in OSS

projects in academia.
– Share my experience managing a small OSS project
– Share my hope for sustainable long-term synchrophasor software development: so we

can build on-top of the shoulder’s of giants!

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=pxc0MjwhpQ0LCM&tbnid=g_Uj0SZY8BR3aM:&ved=0CAUQjRw&url=http://www.innoexperts.de/innonews/items/ideenworkshops-als-instrument-des-innovationsmanagements-12.html&ei=Ty7wUtndIomeyQPn0oHgCg&bvm=bv.60444564,d.bGQ&psig=AFQjCNHd66zzFxPLsM9EXW9OhDqyKu1KtQ&ust=1391558604355835
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=pxc0MjwhpQ0LCM&tbnid=g_Uj0SZY8BR3aM:&ved=0CAUQjRw&url=http://www.innoexperts.de/innonews/items/ideenworkshops-als-instrument-des-innovationsmanagements-12.html&ei=Ty7wUtndIomeyQPn0oHgCg&bvm=bv.60444564,d.bGQ&psig=AFQjCNHd66zzFxPLsM9EXW9OhDqyKu1KtQ&ust=1391558604355835

Outline

• Origins of OSS
• What is Open Source Software, Free Software and Proprietary Software?

– Free (as in speech) / Libre software
– Open Source Software
– Proprietary (or closed source) Software
– Key differences
– Licensing

• Development of OSS – ‘The Cathedral and the Bazar’
• OSS and Business – benefits w.r.t. to Proprietary Software
• Myths about OSS
• OSS and Community
• Pathways to OSS Communities
• Efforts in the IEEE Task Force on OSS for Power Systems
• Planned OSS projects from the iTesla Project
• Conclusions and looking forward
• Addendum: Parallels with the history of software development for power system

analysis

Origins of
Free/Libre and Open Source Software

• 1960s all software’s source code was openly available
• 1970s (mid/late) proprietary software rises

• A means to differentiate, and protect investments
• A new and significant source of revenue

• 1984 Free Software Foundation established by Richard Stallman:
– Out of frustration that the limitations of proprietary software imposed and driven by

philosophical motivations: SW should be free as in freedom.

• 1998 Open Source Initiative (OSI) adopts OSS
• To counteract negative connotations of free software
• To reduce ambiguity of terms, as in: ‘ Free Speech, Free Beer’

• 2003 MITRE Study for US Department of Defense (DoD)
– Found OSS more widely used in critical roles than expected

• 2009 DoD Memorandum “Clarifying Guidance…”
– In almost all cases, OSS meets the definition of “commercial computer

software” and shall be given appropriate statutory preference in accordance
with 10 USC 2377

Background
Concepts and Definitions

• One can divide software in three categories
depending on how they are distributed
(licensing terms) and developed:
– Proprietary Software
– Free/Libre Software (FS)
– Open Source Software (OSS)
– Free/Libre and Open Source Software (FLOSS) is a

term used to merge common characteristics of
Free/Libre Software & Open Source Software

Proprietary Software
Definition

• Proprietary SW has restrictions for:
– Its use, modifications, and, more notably, on copying,

distribution, or publishing of unmodified or modified
versions (if even possible)

– The restrictions are placed by the owners of the software
and detailed in a license agreement (EULA)

– In the USA, copyright laws provide severe penalties for
unlawful distribution of copyrighted material

– Reverse engineering of the SW could also violate the US
Copyright Law or the Digital Millennium Copyright Act

– The term closed software has been suggested to refer to
all this type of SW and avoid the derogatory
misunderstanding of other terms in use.

Open Source Software (OSS)
Definition

• OSS is one that complies with the Open Source Definition
(OSD), published by the Open Source Initiative (OSI).

• The OSD gives the criteria to which SW wishing to adopt an
OSS license must comply with.

• The OSI maintains a list of OSS licenses.
• Summarized Criteria:

– Users must be free to use the SW for any purpose, make copies and
distribute the software without paying the issuer of the license.

– To create derived works, and distribute them without paying royalties.
– To view and use the source code, and to use OSS in combination with

other software including proprietary software.
– OSS software can be distributed free of charge or for a fee.
– Anyone has to have full access to the source code.

Open Source Definition (derived from the Debian FS Guideliness):

Right #1: Free (liberty) redistribution.
Right #2: Source code available.
Right #3: Derived works permitted.
Right #4: Integrity of the author’s source code.
Right #5: No discrimination against persons or groups.
Right #6: No discrimination against fields of endeavor.
Right #7: Distribution of license.
Right #8: License must not be specific to a product.
Right #9: License must not contaminate other SW.

Free/Libre Software (FS)
Definition

• A term coined by Richard Stallman.
• FS is software that can be copied and distributed in modified or

unmodified form without restrictions.
• Restrictions may be used only to ensure that future recipients of the

software can also copy, study, modify and distribute the software – this is
the concept of copyleft; and main difference with OSS.

• The source code must be available always, and its accompanying license
should state that the copyright holder permits these acts.

• FS proponents believe that software should be free “as in speech” so that
it can be reviewed and modified, and not necessarily free “as in beer” or
available at no charge.

• FS is the result of a philosophy and an ethical position about the role of
SW in society - this position does not alienate the possibility of creating a
business.

Tenants of the FS movement:

Freedom 0: to run the program, for any purpose.

Freedom 1: to study how the program works, and change it so it does your
computing as you wish. Access to the source code is a precondition.

Freedom 2: to redistribute copies so you can help your neighbor.

Freedom 3: to distribute copies of your modified versions to others.

Key Difference
a delicate variance in philosophy

• Philosophical:
– Open source shares the philosophical orientation of the proprietary approach,

but rejects its techniques
– Free software advocates reject the orientation and logic of both proprietary

and open source approaches
• The Free Software movement is a campaign for computer users’ freedom

– a nonfree program is an injustice to the user.
• The Open Source movement does not have this ethical position, and

focuses on the practical benefits and value that can be created from
“seeing the source code”.

• Indeed, the OSS movement originated as a schism of the FS community:
– OSS ignores and detaches itself from the Free SW movement’s ethical and social

positions
– OSS focuses on the practical values - having powerful and reliable SW

• In practical terms:
– while the OSS principles see the possibility of co-existing and co-operating with free

software and non-free software, the FSS principles reject this possibility (all software
should be free as in freedom).

Free/Libre and Open Source Software (FLOSS)
Definition

• From the perspective of an OSS or FS advocate, focusing on
practical values, the two approaches seem identical.
– FLOSS is a merger of FS and OSS concepts focusing on their

common software development and distribution
characteristics.

• This aggregation ignores the subtle, but transcendental
philosophical differences between FS and OSS.

• The term is used to show neutrality:
– Shows no preference between any of the political philosophies of the

OSS or FS camps.

• If you don’t want to have any association with the philosophy
of FSF, I recommend you use the term OSS:
– In the words of Eric Raymond: using the “free software” is lousy marketing, its

not something that businesses want to hear.

Software Licensing
• Licenses reflect the terms that the originators decided to impose on the users (and modifiers of the

work).

• Free Licenses:
– or reciprocal, it’s provisions require that on re-licensing the source code must remain open.
– If you choose to distribute an application you programmed or modified, you must include the

source code
– Most important: GNU Public License (GPL).
– Also called “viral”.

• Open Licences:
– Do not contain provisions on re-licensing.
– They allow derivative works from OSS to be converted into closed SW
– They are “non-reciprocal”: the primary recipient obtains the source code but it may not pass it on.
– OSI maintains a list of Open Licenses (BSD and MIT are examples)

• Non-Open Source Licenses:
– Classic proprietary licenses.
– There is no distinction between source code and binary, because the source code is not distributed.
– Re-distribution is prohibited.

• Other licenses: Qt License, Artistic License, Creative Commons … etc., have very unique features.

The Cathedral and the Bazaar
SW Origins Development Methods

• Development Methods
– Eric Raymond’s “The Cathedral and the Bazaar”, gives insight on software development

methods based on analysis on the development process of the Linux kernel and the OSS
fetchmail.

– The Cathedral model:
• is characterized by making source code available at each release – code between releases is restricted

to an exclusive group: “carefully crafted by individual wizards or small bands of mages working in
splending isolation”.

• Roles are clearly defined: design (architects), project management, and implementers.
• Some early FS was developed in this way (GNU Emacs and GCC)
• Raymond’s claim: this model is leads to an inordinate amount of time and energy needed to identify

bugs – code is available only to a few developers.

– The Bazaar model:
• is characterized by development over the Internet and in public view: “a great babbling bazaar of

differing agendas and approaches”.
• Roles are not clearly defined.
• The Linux kernel was developed in this way, and Linus Torvalds is acredited as the inventor of this

process.
• Raymond’s proposition: “given enough eyeballs, all bugs are shallow” (Linus’s Law)

– After the initial (stable) release of an OSS, most projects adopt the Bazaar model.

The Bazaar Model Characteristics:

Users are treated as co-developers: “Given enough eyeballs all bugs are shallow”

Early releases: increases the chances of finding co-developers.

Frequent integration: code changes should be merged into the code base as soon as
possible to avoid overheads in fixing a large number of bugs between releases. OSS
projects use nightly builds when integration is done automatically.

Several Versions: stable and buggy version. Stable has fewer features, but doesn’t
break. Development version has bugs, and user’s take the risk of using the code, which
in turn helps to identify and fix bugs.

High modularization: the SW should be modular to allow parallel development on
different components.

Dynamic decision making structure: formal or informal, takes decisions depending on
user requirements or technological issues.

OSS SW Development
Dev. Method

• From David A. Wheeler Presentation, 11/4/2009
• More from Russell about this.

(includes users
 as developers)

OSS and Business
benefits w.r.t. proprietary software

• Proprietary SW
– Support is a monopoly: only one company has the source code
– Only one company can provide support, and the support may not be

of good quality
• The first OSS business was Cygnus Software originating from Stanford’s

Electronics Research Lab
– The ideas on how to make money out of OSS came from the GNU manifesto
– The idea was to sell consulting and services around the GNU Free Software.
– They developed a model that could provide 2-4 times the support and

handholding capability for ½ to ¼ the cost.
• OSS allows for a free market for any kind of service or support:

– If you use OSS in your business and you want good support, you have a choice
of entities that can provide good support

– These business will have to provide good support or you will go to someone
else.

Myths
about OSS

• OSS is less secure: “A security system is only as secure as its secret. Beware pseudo-secrets.”
– Claim: OSS is insecure because people can get their hands on the code.
– The proprietary approach of “security through obscurity” is as ineffective for protecting SW – availability of

source code has little or no bearing on the security of the software.

• OSS has low quality and low performance
– OSS has a larger community interested in the development of the SW itself, not just one vendor.
– Peer review and the fact that these communities are invested in quality (and not making a buck from every

functional improvement)

• Most OSS developers are college students
– Maybe 20 years ago… there is large number of open source software vendors, and in many areas it is increasing

due to the demand from prospective users to avoid the restrictive nature of the proprietary model.
– This proposition is an out of date myth based on the lack of understanding about modern day priorities and

requirements of users.

• OSS is unsupported
– Did you know Google and Facebook rely on Linux? These players are concern in maintaining SW that runs the

platform on which businesses are built!
– With OSS you always have the choice of bringing an independent third party for consultation… and not having to

wait for the proprietary vendor to take care of your problem.

• OSS has zero cost
– Nope! An OSS vendor can charge you for the SW license and still be open source. There is no relation between

the type of license and what you have to pay to get it.

OSS and Community

• Community is vital to an OSS project – an OSS license is not
enough to bring users and developers to a project and build a
community.

• OSS originates because someone wants something built or to
respond to meet future needs of others (product
development).

• A community originates from a group of individuals sharing
common interests - most of which will be passive, but others
choose to have more active roles:
– Reporting bugs, helping other users, writing documentation or evangelizing.
– Active members can be rewarded for their efforts (e.g. additional access or

control over a project, or simply “peer recognition and appraisal”)

Paths for an
OSS Community

• “Release early. Release often.” and listen to your users: attracts persons that can contribute.
• Developers are needed: and they can be attracted from the user base or from elsewhere (people

interested by the technical challenge)
• Presentation and branding: to convince prospective users that the SW does better than others.
• Get organized:

– Make the SW understandable, set up dev web site, email lists – and write documentation!!!
• Avoid benevolent dictatorships:

– A benevolent dictator is a single person in charge of major new functionalities and reviewing
contributed code.

– This alienates developers who need to be communicated the importance that they “can do more in
concert than individually”.

– Developers will only remain if the leader can make the project a place that they want to keep coming
back to – a reward system is always needed.

• OSS communities must have the ability to outlive their founder’s original interest:
– If they rely heavily on a benevolent dictator, they will fragment and fall apart when the leaders move

or retire
– It is important to ensure that when key developers move on, their roles are adopted by others.

• A governance model:
– That captures the shared understanding and goals of the OSS – is needed in documented form.
– This ensures the community has a life of its own that can survive as long as there is a sustained need

for the project’s outputs.

IEEE PES TF on OSS
for Power Systems

• http://ewh.ieee.org/cmte/psace/CAMS_taskforce/format.htm
• Explores the potential for FLOSS in the Power & Energy Society
• Panel sessions on FLOSS have been organized in Montreal 2006, Tampa

2007, Calgary 2009, Detroit 2011 and Vancouver 2013.
• The TF formally initiated activities in Fall ’08, with 28 members currently

registered.
• Mission:

– (i) to diffuse the philosophy of FOSS in the power systems community; and
– (ii) promote FOSS for the benefit of the PES ranging from pedagogical purposes to

commercial-grade applications.

• The web page collects a list of free and/or open source software packages
for power system analysis.

• To better diffuse the FLOSS philosophy, the TF is preparing a report on the
state of the art of FLOSS for power systems analysis (mostly on simulation
software)

• New members, ideas and leadership are desirable…

http://ewh.ieee.org/cmte/psace/CAMS_taskforce/format.htm

iTesla Project
Planned Open Source Software to be Released

iTesla Power Systems Modelica
Library

iTesla Rapid Parameter
Identification Toolbox

Conclusions
• Education and research takes advantage from OSS:

– In my experience, the students generally accept with enthusiasm the ideas from OSS and
tend to diffuse them once they begin their professional career.

– However, to achieve this goal, professors should adopt OSS ideas first.

• OSS is a business:
– OSS should not be limited to universities or idealists, it can also be a business.
– Several open source projects have become important companies.
– I believe that there is room for this kind of business also in power systems.

• Projects as OpenDSS is used as a platform for other EPRI’s consulting services.
• OpenPDC is another great example of how OSS has a clear potential to enable

innovation and build a software service market in power systems.

• OSS reduces costs and improves reliability:
– OSS offers advantages that could incentive companies to provide their products under a

GPL license (or other) is the fact that OSS projects typically have a large number of users.
– This basically provides an invaluable testing platform.
– One of the most important issues of software applications for power system analysis is

that the users have no actual way of contributing towards the development or even to
be able to fix their own issues when they are capable to do so; this does not make SW
reliable.

Looking Forward
• The future of OSS for synchrophasors is promising although not

completely clear.
– One of the most difficult tasks is to motivate researchers and developers to

share their knowledge and code
– Something that is less common in the power community as compared to other

communities.
– We need to create the context to have an actual community around the SW

• We need to transmit practitioners the idea that OSS is reliable and can be
a business, as several OSS projects have largely demonstrated.
– The product is the know-how and the experience of the people that maintain

the software, not the software tool itself.
– The flexibility and versatility of OSS projects can be a key feature of the

success of emerging smart grid technologies.

• The future of FOSS for synchrophasors depends on you!:

Share, and be rewarded tenfold!

References
• For the philosophers and futurists:

– Richard M. Stallman, Free Software, Free Society: Slected Essays of Richard M. Stallman. Boston: Free Software Foundation, 2002.
– S. Chopra and S. D. Dexter, Decoding Liberation: The Promise of Free and Open Source Software. New York: Routledge Taylor & Francis

Group, 2008.
• For the developers and anthropologists:

– Eric S. Raymond, The Cathedral and the Bazaar. Thyrsus Enterprises, 2000. Available at: http://www.tuxedo.org/
• For the lawyers:

– R. M. Stallman, GNU General Public License. Free Software Foundation, 2007, available at http://www.gnu.org/copyleft/gpl.html.
– K. Coar, “Open Source Definition,” 2007, available at http://www.opensource.org/docs/osd

• For the generalists:
– J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. Lakhani, Eds., Perpectives on Free and Open Source Software. Cambridge, MA: MIT Press,

2005.
– C. DiBona, S. Ockman, and M. Stone, Eds., Open Sources: Voices from the Open Source Revolution. Sebastopol, CA: O’Reilly & Associates,

1999.
– C. DiBona, D. Cooper, and M. Stone, Eds., Open Sources 2.0: The Continuing Evolution. Sebastopol, CA: O’Reilly Media, 2006.

• For the licensors:
– A. M. S. Laurent, Understanding Open Source & Free Software Licensing. Sebastopol, CA: O’Reilly Media, 2004.
– A.G. Gonzalez,“The software patentdebate,”Journal of Intellectual Property Law & Practice, vol. 1, no. 3, pp. 196–2006, Jan 2006.
– R. W. Hahn, Ed., Goverment Policy toward Open Source Software. Washington, D.C.: AEI-Brookings Joint Center for Regulatory Studies,

2002.
• For the business persons:

– P. Kavanagh, Open Source Software: Implementation and Management. Oxford, UK: Elsevier Digital Press, 2004.
– D. Woods and G. Guliani, Open Source for the Enterprise: Managing Risks, Reaping Rewards. Sebastopol, CA: O’Reilly Media, 2005.

• For the power system analysts:
– S. Fustar, “The Impact of Open Source Software on the Next Generation of Energy Systems,” IEEE PES Gen. Meeting, June 2007.
– F.Milano and L.Vanfretti,“State of the Art and Future of OSS for Power Systems,” in IEEE PES Gen. Meeting, Calgary, Canada, Jul. 2009.

http://www.tuxedo.org/
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/docs/osd

Questions?

luigiv@kth.se
luigi.vanfretti@statnett.no

Thank you!

23

The Parallel History of
power system analysis software

• Back in the 60s & 70s, all scientific communities were in the same condition: most
software was open source de facto and was shared among experts in the area.

– Software for power flow and transient stability became available around mid 60s.
– Programs ran in mainframes, GE and Westinghouse were the main service providers.
– Large companies that had mainframes (for billing) started looking into using them for power system

studies.
– By the late 60s many utilities in the USA had developed their own power flow and stability

programs: Philadelphia Electric Co. (PECO) and BPA’s became widely used programs for planning.
– These programs and their source code were freely given away (the term “open source” did not

exist yet), and the BPA SW was in the public domain because it was developed by a US gov. entity.
– BPA and PECO had well-known groups of power engineers who developed, maintained and

improved the SW throughout the 70s and into the 80s.
– Other power companies that used these software, did not had their own groups to support it and

BPA and PECO could not provide support.
– Thus, vendors of planning SW who could provide such user support also thrived in parallel.
– By the late 80s even PECO and BPA decided to disband their in-house expertise in SW development

and the use of these packages dwindled.
– There are few traces of these programs left, except for their mention in the technical literature

from those days.

Lessons from the Parallel History of
power system analysis software

• In the early stages of power system software development, there was no concept
of “open source software” and so, there was no understanding of the importance
and consequences of sharing with the community the code implemented.

• After the paradigm of proprietary software appeared, companies locked out code
and imposed their products by different lock-in methods (e.g. model data format)

• The main reason that relatively few OSS SW are available today for power system
analysis (mainly academic research projects or government funded efforts) is that:
– The potential market in power system analysis was/is relatively small and

composed of a few powerful companies (at least until the world-wide
deregulation began in the 21st century)

– A lot of the early software was heavily hardware dependent (specially code
developed in Europe by ENEL in Italy, Alstom and Areva in France)

– Expertise was/is concentrated in relatively few groups of people, most of
which developed the proprietary tools now commonly in use

• For OSS to succeed in the synchrophasor business we need to create a service
market, develop & implement OSS that supports standards and develop
expertise of engineers to transition them from users to SW authors (early on!)

Let’s learn from history – and not make
the same mistakes again!

	Introduction to�Open Source Software� (the promise for sustainable long-term synchrophasor software development)
	Disclaimer
	Outline
	Origins of�Free/Libre and Open Source Software
	Background�Concepts and Definitions
	Proprietary Software�Definition
	Open Source Software (OSS)�Definition
	Free/Libre Software (FS)�Definition
	Key Difference�a delicate variance in philosophy
	Free/Libre and Open Source Software (FLOSS)�Definition
	Software Licensing
	The Cathedral and the Bazaar�SW Origins Development Methods
	OSS SW Development�Dev. Method
	OSS and Business�benefits w.r.t. proprietary software
	Myths�about OSS
	OSS and Community
	Paths for an �OSS Community
	IEEE PES TF on OSS �for Power Systems
	iTesla Project�Planned Open Source Software to be Released
	Conclusions
	Looking Forward
	References
	��Thank you!
	The Parallel History of �power system analysis software
	Lessons from the Parallel History of �power system analysis software

