Oscillation source location and long term dynamic performance baselining study using ISO-NE's synchrophasor data

NASPI Working Group Meeting

new england

150

GRID

Qiang Zhang, Xiochuan Luo, Slava Maslennikov,

Feng Ma & David Bertagnolli

Jiawei-Alex Ning, Natheer Al-Ashwal & Karine Hay

Outline

- Introduction of PhasorPoint oscillation stability monitoring application
- ISO-NE long-term system baselining using PhasorPoint and PhasorAnalytics
- IS-ONE oscillation source identification by PhasorPoint

Oscillation Stability Monitoring (OSM)

- Extracts frequency, damping, amplitude and phase of the main electromechanical oscillations in the band 0.04 4.0 Hz
- Configurable triggering attributes
 - Mode frequency sub-band
 - Mode damping ratio or decaying time
 - Mode amplitude
 - Hysteresis

• Efficiency of OSM depends on settings of triggering attributes

Oscillation Stability Monitoring, cont.

Long-term System Baselining

Sub-bands Identification

- Finding dominant modes in ISO-New England system
 - Substation frequencies are good candidates
- Determining boundaries between different modes

Filters have been applied to system oscillation modal results to shade out less important PDX results

Measurements Selection

- Only observable locations are suitable for oscillation monitoring.
- Measurements with low observability may affect the accuracy of oscillation results
- Statistics for observability of each dominant modes by each measurement are used for measurement selection.

Threshold Settings

- Low damping ratio (smaller than 3%) is considered to be dangerous to system operation
- Too many alerts / alarms can overwhelm system operators
- Dead bands are suggested to avoid false alarming

Threshold Settings

- Two ways to determine alert / alarm thresholds
 - Statistical Results
 - Especially, the 99.5% and 99.9% limits could tell user at where do outliers show up
 - Locus Plot
 - Shows damping ratio vs. magnitude
 - Overview of modal results
 - Highlights outliers immediately

Threshold Setting Results

		SB1 0.04- 0.15	SB2 0.15- 0.28	SB3 0.28- 0.37	SB4 0.37- 0.45	SB5 0.45- 0.54	SB6 0.54- 0.62	SB7 0.62- 0.76	SB8 0.76- 0.87
Damping Ratio (%)	Alert	2.5	5	4	3	1.5	1.1	2.5	2.5
	Alarm	2	4	3.5	2.5	1	1	2	2
	Dead Band	10	10	10	10	10	10	10	10
Amplitude Frequency (mHz)	Alert	2.5	2.5	3.5	2	3	1.1	5.5	2.5
	Alarm	3	3	4	2.5	4	1.2	6	3
	Dead Band	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Amplitude Active Power (MW)	Alert	7	3.5	6.5	5	1	3.5	4.5	3.5
	Alarm	8	7	7	5.5	1.2	4.5	5	4
	Dead Band	1	1	1	1	1	1	1	1

Oscillation Phase Relations for a Single Machine

- P and δ lag ω by about 90°, determined by damping.
 E.g. damping ratio 20%, angle lags 90°+12° and power lag speed by 90°-12°
- Power (P) in phase with speed (ω) produces positive damping.
- Power out of phase with speed produces negative damping.

A two machine example

Equal Damping Contributions More Damping Contribution from Generator 1 More Damping Contribution from Generator 1

The Lagging generator contributes more damping than the leading generator – Leading generator is "source"

Identifying Sources of Oscillations

- Leading phase indicates less damping contribution.
- The "source" is the location with the lowest damping contribution (possibly negative).
- To find the source of an oscillation:
 - 1. Divide into opposing groups. The group leading by less than 180° is the group containing the source.
 - 2. Find the most leading location within the leading group.

Simulation Cases

- Cases 1-5 are based on simulation in entire Eastern Interconnection with detail modeling of generators, excitation systems, governors and PSSs. Number of buses is > 50K and the number of generators > 5K.
- Only Voltage Angle measurements from NE were used to identify sources of oscillations.

- Case 1: Inside NE
- 1 Hz sinewave injection at *Millstone* unit 3 Exciter Vref.
- *Millstone* has the most leading phase within the leading group

Simulation Cases Continued

- Case 4: Inside NE: Negative Damping
- Reversed *Seabrook* PSS and created negative damping.
- *Seabrook* has the most leading phase within the leading group.
- Case 5: Outside NE: 1.11 Hz
- 1.11 Hz sin wave was injected on exciter at TMI 1 GEN (204659) at RFC. A resonating 1.11 Hz oscillation at NE was observed with two opposing groups.
- Most leading phase within the leading group, is at the connection to New York (outside NE).

Real Data Example

- A 1.3 Hz mode with poor damping.
- PMU 11 has the most leading phase and is consistently identified as the source.
- The mode damping can be correlated to the output of generators near this PMU.

Questions

