IEEE Cascading Failures Working Group (CFWG)

Working Group: Understanding, Prediction, Mitigation and Restoration of Cascading Failures

IEEE PES Computer and Analytical Methods Subcommittee (CAMS)

Milorad Papic, Idaho Power Co. Marianna Vaiman, V&R Energy

NASPI Meeting · March 24, 2015 San Mateo, CA

IEEE CAMS WG on Cascading Failures

Initiated during 2007 IEEE PES GM:

"To investigate new methods, technologies and tools in order to better understand, predict, mitigate and restore cascading failures. Sponsor technical sessions, tutorial courses, workshops, conferences for effective exchange of information on the state-of-the art, best practices, procedures and strategies." **IEEE PES** Chair: Milorad Papic, IPC, USA Power System Analysis, Computing and Economics (PSACE) Committee **Computing and Distribution System Risk, Reliability and Intelligent Systems** System Economics Analysis Subcommittee **Analytical Methods Probability Applications** Subcommittee (ISS) Subcommittee (SES) (DSAS) Subcommittee (RRPAS) Subcommittee (CAMS) WG on **TF on High** Understanding, Performance **TF on Power System** Prediction, **TF on Cyber Security TF on Open Source Computing for Grid** Modeling in CIM of Power Systems Software (OSS) **Mitigation and** Analysis and **Restoration of** Operation **Cascading Failures**

IEEE CAMS WG on Cascading Failures – Drivers and Purpose

- Drivers:
 - Blackouts
 - NERC Standards
 - Limited commercially available Tools
- The purpose of WG is to facilitate the following activities:
 - Understanding of Cascading Failures
 - Prediction of Cascading Failures
 - Mitigation of Cascading Failures
 - Restoration from Cascading Failures
 - Availability of Tools for Analysis of Cascading Failures

Availability of Data for Analysis of Cascading Failures

WG Current Activities

- Restoration from cascading failures
 - The objective is to review the state-of-the-art techniques and industry practice in power system restoration:
 - Analytical models and algorithms
 - Industry decision-support tools, strategy, practice
- Industry survey on practices for analysis of cascading outages
- Modeling of dynamics and protection/control systems in cascading

CFWG Activities at GM 2015 Denver, CO

- Monday, July 27, 1 PM 3 PM Annual Meeting
- Tuesday, July 28, 1 PM 5 PM Panel Session "Cascading Failures: Advanced Methodologies, Restoration and Industry Perspectives"
- Wednesday, July 29, 8 AM -5 PM -Tutorial "Understanding Cascading Phenomenon"

CFWG Tutorial: July 29, 2015

 First IEEE tutorial dedicated to cascading:

Registration
fee is waived
for first 20
registered
students

Summany of Tonics	Papalists (in the order of appearance)
Summary of Topics	Panelists (in the order of appearance)
1. Overview of Cascading Outages	Ian Dobson, Iowa State University
Phenomenon	Vladimir Terzija, University of Manchester
2. Framework for Analysis of	Mladen Kezunovic, Texas A&M University
Cascading Outages	Paul Hines, University of Vermont
3. Current Tools and Emerging	Milorad Papic, Idaho Power Company
Technologies for Prediction and	Marianna Vaiman, V&R Energy
Detection of Cascading Outages	Vahid Madani, Pacific Gas & Electric
	Damir Novosel, Quanta Technology
4. Current Tools and Emerging	Marianna Vaiman, V&R Energy
Technologies for Prevention and	Vahid Madani, Pacific Gas & Electric
Mitigation of Cascading Outages	Damir Novosel, Quanta Technology
5. Industry Experience in the Analysis	Milorad Papic, Idaho Power Company
of Cascading Outages	Ryan Quint, Dominion Virginia Power
	Dede Subakti, California ISO
	Eugene Litvinov, ISO New England
6. Restoration from Cascading Failures	Vijay Vittal, Arizona State University
	Michael Forte, Con Edison of New York
7. Analysis of Past Blackouts Caused by	Bob Cummings, NERC
Cascading Outages: Lessons Learned	Brett Wangen, Peak Reliability

CFWG Panel Session: July 28, 2015

- The goal is to share latest methods in the areas of analysis, mitigation and prevention of cascades.
- Addresses the following aspects:
 - Industry perspectives and standards that deal with evaluation, mitigation and preventive actions for cascading failure events.
 - Power system restoration following an extreme cascading outage event
- Brings some main contributors from different countries together.

2015 Survey on Cascading Analysis

Multiple choice questionnaire, including:

- 1. How often is the analysis of cascading outages performed in your organization?
- 2. In which domain does your company study cascading events?
- 3. What are the main objectives in performing cascading outages analysis in your organization?
- 4. Is cascading outages analysis an automated process?
- 5. Do you analyze cascading outages using steady-state analysis tools?
- 6. Do you analyze cascading outages using dynamics?
- 7. Do you apply mitigation measures to alleviate consequences of cascading outages?
- 8. Is determining mitigation measures to alleviate consequences of cascading outages an automated process?
- 9. Do you use synchrophasor data for prediction and analysis of system blackouts/cascading outages?

Why PMUs??

- PMUs are used for Wide Area Measurement Systems
- Functionalities to predict cascading outages include:
 - Early detection of events
 - Variations of reactive/active injections
 - Complements the information coming from breaker status signals
 - Voltage stability analysis on interfaces/corridors
 - Uses the V, I measurements at both ends of one line corridor and the maximum power transfer computation
 - Provides the voltage stability margin with respect to maximum transfer condition
 - Phase Angle Monitoring
 - Monitors high angle displacements, to detect highly loaded lines
 - Oscillatory analysis
 - Predicts unstable oscillations which may trigger line trippings

Use of PMUs for Analysis of Cascading Outages

- Prediction of "slow" cascading outages:
 - These cascades may be analyzed from steady-state stability perspective
- The most sensitive phase angles are identified in realtime for each scenario/interface/corridor:
 - These quantities are monitored, reported and visualized
 - May change over time as the system conditions change
- The accuracy of the limit values computed off-line may be improved by using real-time PMU measurements

These values are adjusted dynamically

Use of PMUs for Fast

Identification/Prevention of Cascades

- PMU measurements allow for faster and more accurate relay operation and enabling *RAS*
- Wide area oscillation *damping control*
- Advanced defense functions, like *coordinated* wide area *load shedding* actions, *controlled islanding*, etc
- No consolidated solutions so far

Conclusion

- If you received an email via IEEE/PES with WG survey, please respond to our questions
- Next WG meeting is during 2015 PES GM:
 - Please come and join us for a discussion on the phenomenon of cascading failures and use of PMUs to predict, prevent and analyze cascades.

Thank you!

